GUIDE

Graphical User Interface Development Environment

Andrea Longoni
Id. Number: 13896A

MSc in Computer Science

Advisor: Prof. Walter Cazzola
Co-Advisor: Dr. Matteo Brancaleoni

UNIVERSITA DEGLI STUDI DI MILANO

Computer Science Department
ADAPT-Lab

Academic Year 2023-2024

dVT-LdVAV e LNHWIIVJAA HONHIOS d4LNdNOD

Contents

1 Introduction 1
2 Background 5
2.1 Domain-Specific Languages (DSLs) 5
2.1.1 A comparison between DSLsand GPLs 5

2.1.2 Advantages and Limitationsof DSLs 6

2.1.3 Internal and External DSLs 6

2.1.4 Syntax and Semanticsin DSLs 7

2.2 Code Generation 7
2.2.1 Source Code Generation 8

2.2.2 Template-Based Generation 8

2.3 Software Product Line Engineering 8
2.3.1 SPL Architecture and Artifacts 9

2.4 Neverlang: A Language Workbench for DSLs 10
2.4.1 Modular Language Implementation 10

2.4.2 Extensibility and Composition 10

2.4.3 Application to Domain-Specific Languages 11

2.5 Graphical User Interfaces (GUIs) 11
25.1 Key Conceptsof GUIs 12

2.5.2 Architectural Components of GUIs 12

2.6 DesignPatterns 13
2.6.1 AdapterPattern. oo o L 13

2.6.2 Composite Pattern 13

2.6.3 Abstract Factory Pattern 14

2.6.4 The Builder Pattern 14

3 Problem Statement 17
3.1 Existing Technologies and Limitations 17
3.1.1 Slint: A Declarative Toolkit for GUI Development 18

3.1.2 Glade: A GUI Designer for GNOME 20

3.1.3 Flutter: A Cross-Platform Ul Framework 22

3.2 Research Objectives 24

4 Architecture 27
4.1 Library Layer 28
4.2 AdapterLayer 30
43 DSLLayer 32
4.4 Software Product Line (SPL) Integration 33

Contents

5

ii

Implementation
5.1 Technologies Used
5.1.1
5.2 Project Structure . .
5.2.1
5.2.2
5.2.3
5.2.4
53
53.1 Core
5.3.2
5-4
5.4.1
5.4.2
5-5
551 Core

5.6

57

5.5.2

SPL Implementation

5.6.1
5.6.2

5.7.1
5.7.2

Target Languages

guide-lib: Library Module
guide-dsl: DSLModule
guide-spl: SPLModule
guide-jar: Generated SPL Module
Library Implementation

Components and Layouts
Adapters Implementation 0 0oL
Structure of the Adapters
Rendering and Code Generation
DSL Implementation

Components and Layouts
5.5.3 NeverlangCommons.

Feature-Based Composition
Utility Programs for Extension
Example Usageof the DSL
Description of the Example
Implementation and Evaluation

Experiments
Modularity and Scalability 0 0.
Commit Analysis for Modular Development
Code Reduction and Development Effort
Estimated Time Savings

6.1

6.2

6.3

6.4

6.1.1

6.2.1
6.2.2

Conclusion

Effort Analysis for Feature Extension
Adding a New Output Language
Adding a New Component or Layout

6.3.1
6.3.2
6.3.3

Conclusion

Impact of Feature Selection on Storage and Distribution Efficiency . . .
JAR Size Analysis L o
Effect of Feature Removal
Modularizing Dependencies for Efficient Distribution
Advanced Compression Strategies for Distribution Efficiency . .

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Conclusion

Related Work
DSLs for GUI Modeling and Generation

7.1

35
35
36
37
38
38
38
39
39
39
42
44
44
45
45
45
47
48
48
49
50
51
51
53

57
57

61
62
63
63
63
64
65
65

66
66

67
68

69

Contents

7.2 SPL Approaches in GUI Engineering 70
7.3 SPL and DSL: Synergy for Software Engineering 71
7.4 Automated GUI Generation Techniques 72

8 Conclusions 75

iii

Introduction

Graphical User Interfaces (GUISs) play a crucial role in modern software applications,
serving as the primary medium through which users interact with digital systems. The
design and implementation of GUIs require significant effort, often involving repetitive
coding tasks and adherence to complex framework-specific rules. As applications grow
in complexity, ensuring consistency, maintainability, and adaptability of GUIs across
different platforms becomes increasingly challenging.

To address these challenges, the software engineering community has explored
various approaches to streamline GUI development. One widely adopted strategy
is the use of code generation [18], where high-level specifications are automatically
transformed into executable code. Code generation techniques reduce manual effort,
minimize human errors, and promote consistency across different implementations.
However, traditional code generation approaches often lack flexibility, making it difficult
to customize or extend the generated UI components.

Another approach to improving GUI development is the use of Domain-Specific
Languages (DSLs) [17]. A DSL is a programming language or specification language
designed for a particular domain, offering high-level abstractions that simplify the
development process. In the context of GUI development, DSLs allow designers and
developers to describe Ul structures declaratively, focusing on the layout and behavior
rather than low-level implementation details. This abstraction enhances productivity
and promotes separation of concerns between UI definition and application logic.

In parallel, Software Product Lines (SPLs) [3] have emerged as a powerful paradigm
for managing variability and reuse in software systems. SPLs enable the systematic
production of multiple software variants by leveraging a common set of core assets
while allowing configurable customizations. When applied to GUI development, SPL
principles facilitate the modularization of Ul components, enabling developers to
assemble different interface configurations based on specific requirements.

Despite these advancements, existing solutions often struggle to balance flexibility,
modularity, and maintainability. Many code generation tools produce monolithic
outputs that are difficult to modity, while some DSL-based solutions remain tightly
coupled to specific frameworks, limiting their adaptability. Additionally, SPL techniques,
while effective in managing variability, are rarely applied to GUI development in a way
that seamlessly integrates with DSL-based approaches.

This thesis addresses these challenges by proposing a novel methodology that com-
bines DSLs and SPLs for GUI generation. By leveraging the strengths of both paradigms,
the proposed approach aims to provide a flexible, modular, and reusable solution for

1 Introduction

defining and generating Ul code across multiple programming languages. The fol-
lowing sections outline the limitations of current technologies, the objectives of this
research, and the contributions of the proposed framework.

Limitations of Existing Technologies. Despite the numerous advancements in GUI
development, existing technologies present several limitations that hinder flexibility,
maintainability, and scalability. Traditional GUI frameworks and code generation tools
often impose rigid structures that make adaptation to different contexts challenging.
These limitations can be categorized into three main areas: lack of modularity, limited
support for multiple target languages, and inefficiencies in code reuse.

One significant drawback of many GUI development approaches is the lack of
modularity. In several existing frameworks, UI components are tightly coupled with
their underlying implementation, making it difficult to selectively include or exclude
specific features. This monolithic approach results in large, unwieldy codebases where
even minor modifications require extensive changes across multiple files. Additionally,
many frameworks do not provide a structured way to manage feature variability,
limiting their applicability in scenarios requiring high levels of customization.

Another major limitation concerns the restricted support for multiple target lan-
guages. Many GUI frameworks are designed with a specific programming language in
mind, forcing developers to rewrite Ul logic when porting applications to different plat-
forms. Even in cases where cross-platform solutions exist, such as Flutter' or Qt?, these
frameworks typically impose their own ecosystem, requiring developers to conform to
their APIs and rendering engines. This constraint reduces the flexibility of software
teams that may need to integrate with existing codebases in different languages.

Furthermore, code reuse and maintainability remain persistent challenges. While
modern software engineering practices encourage component reuse, many GUI so-
lutions lack an effective way to share Ul components across different projects or
configurations. When developers need to support multiple variants of an application,
they often resort to duplicating and modifying code manually, leading to increased
maintenance effort and higher risks of inconsistencies. The absence of systematic
mechanisms for handling variations in UI structures further exacerbates this issue.

The shortcomings of these technologies highlight the need for a new approach
that combines the strengths of multiple paradigms. By integrating Domain-Specific
Languages (DSLs) and Software Product Lines (SPLs), it is possible to address these
limitations, offering a more modular, adaptable, and reusable way to define and
generate GUIs. The next section introduces the key objectives of this research, outlining
how the proposed approach aims to overcome these challenges.

Contributions. This research introduces GUIDE (Graphical User Interface Develop-
ment Environment), a system designed to guide developers in the creation of graphical

Thttps://flutter.dev/
2https://www.qt.io/

https://flutter.dev/
https://www.qt.io/

user interfaces (GUIs) by automating code generation and providing high-level abstrac-
tions. By combining Domain-Specific Languages (DSLs) and Software Product Lines
(SPLs), GUIDE streamlines the UI development process across multiple programming
languages.

The key contributions of this work are as follows:

— Definition of a DSL for UI specification: GUIDE provides a domain-specific
language designed to simplify the definition of user interfaces. The DSL enables
developers to describe Uls in a high-level, declarative manner, abstracting away
the complexities of underlying implementation details.

— Automated multi-platform code generation: GUIDE supports the generation
of UI code for multiple target languages, eliminating the need for developers to
manually implement the same interface in different programming environments.

— A modular and configurable architecture: GUIDE applies SPL principles to
organize Ul components, layouts, and features as independent modules. This
modularity allows developers to generate customized versions of the system,
including only the required components and reducing unnecessary dependencies.

- Enhanced maintainability and reusability: By structuring UI definitions within a
DSL and leveraging SPL-based modularization, GUIDE facilitates the reuse of Ul
components across different projects while maintaining consistency and reducing
code duplication.

— Improved distribution efficiency: GUIDE incorporates optimizations to minimize
the impact of large dependencies, allowing developers to generate lightweight
versions of the system tailored to their specific needs.

These contributions aim to improve efficiency in GUI development, reduce manual
coding effort, and provide a scalable approach to UI generation. The following section
outlines the structure of this thesis, detailing how each chapter addresses these research
contributions.

Outline. This thesis is structured to provide a comprehensive understanding of
GUIDE, progressing from its conceptual foundations to its implementation and evalua-
tion. The discussion begins with an overview of the fundamental concepts and tech-
nologies that underpin the project. Chapter 2 introduces Domain-Specific Languages
(DSLs), Software Product Lines (SPLs), and code generation techniques, establishing
the theoretical framework that justifies the approach taken in GUIDE. These concepts
form the foundation for the following chapters, where their practical application is
explored in depth.

Building on this background, Chapter 3 presents the challenges faced in UI devel-
opment and code generation, particularly concerning modularity, language support,
and maintainability. The chapter highlights the limitations of existing solutions and
defines the research problem that GUIDE aims to address. This problem statement sets
the stage for Chapter 4, which details the proposed architecture of GUIDE. Here, the
modular structure of the system is introduced, describing how its DSL, library, and SPL

1 Introduction

components interact to enable flexible and scalable UI generation.

Following the architectural design, Chapter 5 delves into the technical details of
GUIDE'’s implementation. This chapter explores the core elements of the DSL and the
supporting library, including key components, syntax definitions, and the mechanisms
that facilitate code generation. To provide a concrete understanding, relevant code
listings and diagrams illustrate how GUIDE transforms high-level Ul descriptions into
executable code.

Once the implementation has been described, Chapter 6 evaluates the effectiveness
of GUIDE through a series of experiments. This chapter measures GUIDE’s impact on
code reduction, development effort, and storage efficiency, comparing its benefits to
traditional UI development approaches. The results of this analysis serve to validate
the effectiveness of GUIDE in real-world scenarios.

In Chapter 7, the thesis situates GUIDE within the broader context of research on
DSLs, SPLs, and automated GUI generation. The discussion reviews existing academic
literature and compares GUIDE to similar approaches, highlighting both its innovations
and its alignment with prior work in the field.

Finally, Chapter 8 summarizes the main contributions of this research, discussing the
strengths and limitations of GUIDE. The chapter also explores potential directions for
future work, such as expanding GUIDE’s DSL capabilities, enhancing its architecture,
and improving usability through new development tools. This final discussion reflects
on the broader impact of GUIDE and outlines areas for continued refinement and
exploration.

Overall, this thesis follows a structured approach, guiding the reader from theoretical
foundations to practical implementation and empirical validation. By presenting the
motivations, contributions, and evaluation of GUIDE in a clear and progressive manner,
it provides a complete perspective on the system’s role in addressing the challenges of
UI development.

Background

2.1 Domain-Specific Languages (DSLs)

Languages are the foundation of software development, serving as the medium through
which developers express instructions, designs, and ideas to machines. Traditionally,
General-Purpose Languages (GPLs) such as Java', Python?, and C++3 have been
widely used to develop a vast range of applications due to their flexibility and broad
applicability. However, the increasing complexity of software systems has driven the
need for languages tailored to specific tasks or domains. Domain-Specific Languages
(DSLs) emerge as a response to this need, providing a means to describe problems and
solutions within a constrained area of expertise.

DSLs are not intended to solve a wide range of computational problems. Instead,
they focus on providing a highly specialized, expressive, and efficient syntax for specific
tasks. This specialization makes DSLs particularly valuable in domains where precision,
readability, and abstraction are critical, such as configuration management, query
processing, and user interface design.

The evolution of DSLs reflects the growing importance of bridging the gap between
domain experts and software developers. By aligning closely with domain concepts,
DSLs allow non-programmers to interact with software systems effectively while
enabling developers to focus on broader architectural concerns. This synergy has made
DSLs a powerful tool in modern software engineering.

2.1.1 A comparison between DSLs and GPLs

Domain-Specific Languages (DSLs) are specialized languages designed to address
specific tasks within a defined domain. Unlike General-Purpose Languages (GPLs),
which are versatile and can handle a broad range of programming challenges, DSLs
focus on providing precise and efficient solutions for domain-specific problems. This
distinction shapes the way these languages are designed, used, and maintained.

DSLs excel in scenarios where domain experts need to interact with software sys-
tems. Their syntax and semantics are closely aligned with the domain, enabling
non-programmers to express complex ideas without extensive knowledge of program-
ming. For instance, SQL [14] allows database administrators to manipulate and query

Thttps://www.java.com/
2https://www.python.org/
3https://www.cplusplus.com/

https://www.java.com/
https://www.python.org/
https://www.cplusplus.com/

2 Background

data without delving into the complexities of database engine internals. Conversely,
GPLs such as Python or Java require broader programming expertise, as they are
designed to solve problems across diverse domains.

However, the specialization of DSLs comes at a cost. While GPLs are supported
by extensive ecosystems of libraries, tools, and communities, DSLs often have limited
tooling and are less portable. This trade-off between focus and flexibility defines the
roles of DSLs and GPLs in software development.

2.1.2 Advantages and Limitations of DSLs

The primary advantage of DSLs lies in their ability to abstract away unnecessary
complexity. By narrowing their focus to a specific domain, they provide expressive and
concise syntax that reduces both development time and error rates. Their alignment
with domain concepts also improves readability and maintainability, especially for
domain experts who are not professional programmers.

On the other hand, this focus limits their scope of applicability. A DSL is often
unsuitable for tasks outside its intended domain, necessitating integration with GPLs
for broader functionality. Furthermore, developing and maintaining a DSL can be chal-
lenging, particularly when it involves designing custom tooling, ensuring compatibility
with other systems, or adapting to evolving domain requirements.

2.1.3 Internal and External DSLs

DSLs can be classified into two main categories: internal and external.

Internal DSLs are embedded within a host GPL, leveraging its syntax, semantics, and
runtime environment. They often appear as libraries or frameworks, offering a DSL-like
syntax while benefiting from the ecosystem and tooling of the host language. For
example, testing frameworks or query libraries embedded in programming languages
exemplify this approach.

External DSLs, in contrast, are standalone languages with their own syntax, semantics,
and execution environments. They require dedicated parsers or compilers to translate
their code into executable artifacts. While external DSLs offer greater flexibility in
designing language constructs, they demand significant effort to develop and maintain,
including the creation of custom editors, debuggers, and other tools.

A practical example of this distinction can be seen in database querying. SQL itself is
an external DSL, as shown in Listing 2.1. It has its own syntax and execution model,
requiring a dedicated parser and interpreter within a database engine.

| SELECT name, age FROM users WHERE age > 18 ORDER BY name; |

Listing 2.1. Example of an external DSL: SQL.

On the other hand, many programming languages provide internal DSLs for database
interaction, embedding query-like functionality within their syntax. For example, in

2.2 Code Generation

Python using SQLAlchemy* (Listing 2.2), the query is expressed using an object-
oriented API within Python, leveraging the language’s syntax while abstracting SQL
operations.

| session.query(User).filter(User.age > 18).order_by(User.name).all() |

Listing 2.2. Example of an internal DSL: SQLAlchemy in Python.

The choice between internal and external DSLs depends on the balance between
the desired level of expressiveness and the cost of implementation. Internal DSLs
are often simpler to create but constrained by the syntax and semantics of the host
language, whereas external DSLs allow for complete customization at the expense of
higher development costs.

2.1.4 Syntax and Semantics in DSLs

The design of a DSL involves three foundational aspects: abstract syntax, concrete
syntax, and semantics. The abstract syntax defines the logical structure of the language,
focusing on the relationships and hierarchies between its constructs. It is typically
represented using structures such as abstract syntax trees, which serve as the backbone
of the language’s grammar.

The concrete syntax, on the other hand, specifies how the language is represented
textually or visually. This includes the keywords, symbols, and formatting rules that
users interact with directly. While abstract syntax defines the underlying structure, the
concrete syntax shapes the user experience, influencing the ease of learning and using
the language.

Finally, semantics provide meaning to the language constructs. They define how each
element of the DSL behaves, either through operational rules that describe execution or
through mathematical mappings that establish formal properties. Semantics ensure
that the language’s syntax aligns with the intended domain, enabling precise and
predictable behavior.

2.2 Code Generation

Code generation is the process of automatically producing code from higher-level
specifications, reducing repetitive tasks, minimizing errors, and improving development
efficiency. It enables the transformation of abstract models into executable programs or
intermediary artifacts, streamlining software development.

There are multiple approaches to code generation, each catering to different use cases.
Two widely used techniques are source code generation and template-based generation,
which offer varying degrees of automation and flexibility.

4https://www.sqlalchemy.org/

https://www.sqlalchemy.org/

2 Background

2.2.1 Source Code Generation

Source code generation involves producing full or partial implementations in general-
purpose programming languages such as Java, Python, or C++. This technique is
particularly useful for eliminating boilerplate code, automating repetitive patterns, and
ensuring consistency across large projects.

Many modern frameworks leverage source code generation to create foundational
components like data models, controllers, or configuration files. This accelerates
development by providing a structured starting point while allowing customization
when needed.

For example, web frameworks often include tools to generate standardized com-
ponents such as database models and API endpoints, reducing manual effort. The
generated code serves as a base that developers can refine and extend according to
project-specific requirements.

By automating the creation of frequently used structures, source code generation
enhances productivity, maintains uniformity, and reduces development overhead,
particularly in large-scale or structured environments.

2.2.2 Template-Based Generation

Template-based generation is a popular technique that involves using predefined
templates to generate code automatically. Templates are essentially blueprints that
define the structure and behavior of the generated code, but include placeholders that
are filled in with specific values or logic during the generation process.

This approach is particularly useful in scenarios where the structure of the generated
code follows predictable patterns. Templates can be designed to create complex systems
or simple components such as configuration files, database schemas, or API endpoints.
By reusing these templates, developers can automate the creation of large portions of
code that would otherwise be tedious and repetitive to write by hand.

Template-based generation works by defining a set of rules and patterns that describe
the structure of the code. These patterns are then applied to specific data inputs
or configurations to generate the desired code. This method can be applied across
a wide range of use cases, and templates can be modified or extended to suit new
requirements.

2.3 Software Product Line Engineering

A Software Product Line (SPL) is a systematic approach to software development
that focuses on creating a family of related software products. Unlike traditional
methods, which often treat each software product as a standalone entity, SPL aims to
leverage commonalities among products while managing variability to meet specific
requirements. This approach is particularly valuable in contexts where software systems
need to be customized for different clients, markets, or operational environments.

2.3 Software Product Line Engineering

The concept of SPL emerged as a solution to the challenges posed by the growing
complexity and diversity of software systems. By emphasizing reuse and modularity,
SPL enables organizations to develop multiple product variants efficiently, reducing
time-to-market and overall development costs. At its core, an SPL consists of a core
asset base, which includes reusable components, architectures, and processes, and a
mechanism to configure these assets into specific product variants.

Key to the success of SPL is the ability to manage variability, which refers to the
differences among products within the product line. Variability is captured and
managed through techniques such as feature modeling, which provides a structured
representation of the options and choices available in the product family. Feature models
allow stakeholders to define and configure product variants systematically, ensuring
that the resulting systems meet their requirements while maintaining consistency across
the product line.

SPL has gained significant traction in various domains, including automotive soft-
ware, embedded systems, and enterprise applications, where the need for tailored
solutions is critical. By adopting SPL, organizations can achieve significant benefits
such as improved productivity, enhanced quality, and better scalability. However,
implementing SPL also presents challenges, particularly in managing the trade-offs
between flexibility and complexity.

2.3.1 SPL Architecture and Artifacts

The architecture of a Software Product Line (SPL) is a carefully designed structure
that enables the systematic reuse of shared assets while accommodating the variability
needed to produce diverse products. This architecture is central to the efficient operation
of SPLs, as it ensures that shared resources are effectively managed and variability is
seamlessly integrated into the product generation process.

At the foundation of an SPL lies the core asset base [23], a repository that houses all
reusable elements necessary for building the product line. These assets can include
software components, libraries, templates, and documentation, all designed to be
shared across multiple products. The core asset base is meticulously curated to ensure
consistency and maintainability, making it a cornerstone of the SPL approach. By
centralizing reusable assets, organizations reduce duplication of effort, streamline
development processes, and maintain high standards of quality across their product
offerings.

A crucial aspect of SPL architecture is modularization, which facilitates the manage-
ment of variability. By dividing the system into modular components, developers can
address specific requirements without impacting the overall architecture. Each module
represents a self-contained unit of functionality that can be independently customized
or replaced. This modular approach not only simplifies the integration of variability but
also enhances scalability, enabling the SPL to grow and evolve as new features or market
demands arise. Techniques such as feature-based composition and aspect-oriented
programming are commonly employed to implement modular architectures, ensuring
that the variability defined in the SPL can be effectively managed and deployed.

2 Background

Another vital component of SPLs is the generation of product-specific artifacts,
which translate the variability defined in the feature model into tangible outputs.
These artifacts may include source code, configuration files, and executable binaries,
all tailored to the unique configuration of a particular product. Automation plays
a significant role in this process, with tools that interpret the feature model, resolve
dependencies, and assemble the required components from the core asset base. By
automating artifact generation, organizations minimize the risk of errors and ensure
that the final products align with the defined requirements and constraints.

2.4 Neverlang: A Language Workbench for DSLs

Neverlang [11, 13, 29, 30] is a JVM-based language workbench [16] designed to facilitate
modular language development by enabling the composition and reuse of language
features. Unlike traditional monolithic approaches to compiler and interpreter design,
Neverlang allows language constructs to be defined as independent, composable
modules that can be combined dynamically to create a fully functional programming
language or domain-specific language (DSL).

The framework follows a syntax-directed translation approach [1], in which a com-
piler or interpreter constructs an abstract syntax tree (AST) from an input program
and processes it through multiple compilation phases. Each phase visits the AST and
applies transformations or evaluations to its nodes, ultimately producing executable
code or performing an interpretation of the program.

2.4.1 Modular Language Implementation

The core principle of Neverlang is modularity. Each language feature is encapsulated
in a self-contained module, which consists of:

- A syntax definition, typically expressed using a BNF-like notation.
— One or more roles, each defining a specific semantic action or compilation phase.

Neverlang introduces the concept of slices, which act as grouping mechanisms for
language features. A slice can aggregate syntax rules and roles from multiple modules,
effectively enabling different parts of a language to be developed separately and later
combined into a complete language specification.

2.4.2 Extensibility and Composition

A key strength of Neverlang is its ability to evolve languages incrementally by compo-
sition [12]. New features can be added without modifying the existing implementation,
simply by introducing new modules and slices. Additionally, Neverlang’s design allows
language implementations to be distributed as precompiled components, reducing the
need for recompilation when extending an existing language.

The framework also supports language variability, making it possible to define
different configurations of a language tailored to specific use cases. This aligns well

10

2.5 Graphical User Interfaces (GUIs)

with the principles of Software Product Lines (SPLs), as developers can selectively
include only the necessary features when generating a language variant.

2.4.3 Application to Domain-Specific Languages

Neverlang is particularly well-suited for the development of DSLs, as it provides
mechanisms to define domain-specific constructs in a modular and maintainable way.
Its ability to integrate with Java and other JVM-based languages makes it a practical
choice for DSL implementations that require seamless interoperability with existing
software ecosystems.

In summary, Neverlang provides a highly flexible and modular approach to language
development, enabling composable language features, incremental extensibility, and
efficient reuse of language components. Its design aligns closely with modern software
engineering practices, making it a powerful tool for building both general-purpose and
domain-specific languages.

2.5 Graphical User Interfaces (GUIs)

Graphical User Interfaces (GUIs) are a fundamental component of modern software
systems, providing users with intuitive ways to interact with applications and access
their functionality. GUIs present information visually through graphical elements such
as windows, buttons, menus, and icons, enabling users to perform tasks efficiently and
effectively.

The design of GUISs is a multidisciplinary field that combines principles of human-
computer interaction, graphic design, and software engineering. A well-designed
GUI enhances user experience by providing clear navigation, consistent feedback, and
intuitive controls. GUIs are essential in a wide range of applications, from desktop
software and web applications to mobile devices and embedded systems.

The development of GUIs involves several key considerations, including layout
design, interaction patterns, accessibility, and responsiveness. Designers must balance
aesthetic appeal with usability, ensuring that the interface is visually engaging while
remaining functional and accessible to diverse user groups. The choice of graphical
elements, color schemes, typography, and animations all contribute to the overall user
experience.

GUIs can be created using a variety of technologies and frameworks, each offering
different levels of flexibility, performance, and platform compatibility. Common GUI
development tools include libraries such as Qt, JavaFX5, and GTK?®, as well as web
technologies like HTML [8], CSS [26], and JavaScript?.

For modern web-based UI development, frontend frameworks such as Bootstrap® and

S5https://openjfx.io/
6https://www.gtk.org/
7https://js.org/
8https://getbootstrap.com/

11

https://openjfx.io/
https://www.gtk.org/
https://js.org/
https://getbootstrap.com/

2 Background

Tailwind CSS? provide predefined styles and responsive design capabilities, reducing
the need for extensive manual styling. Additionally, server-driven UI frameworks like
Phoenix LiveView'®, built on Elixir**, enable real-time web applications by maintaining
a persistent connection between the client and server, minimizing JavaScript usage
while improving performance and maintainability.

The choice of technology depends on factors such as the target platform, performance
requirements, and developer expertise.

2.5.1 Key Concepts of GUIs

At its core, a GUl is a visual interface that allows users to interact with software through
graphical elements such as buttons, menus, icons, and windows, rather than relying
solely on text-based commands. The evolution of GUIs has been pivotal in making
computing accessible to non-technical users, transforming software systems into tools
that can be efficiently used in various domains, from personal computing to industrial
applications.

GUIs are often contrasted with Command-Line Interfaces (CLIs), which require users
to input textual commands to interact with a system. While CLIs offer efficiency and
precision for advanced users, GUIs prioritize user-friendliness and accessibility. They
rely on direct manipulation principles, where users interact with visual representations
of objects to perform actions, such as dragging a file to delete it or clicking a button to
submit a form.

2.5.2 Architectural Components of GUIs

The design and development of GUIs follow well-defined architectural principles that
separate the user-facing elements from the underlying application logic. This separation
promotes modularity, scalability, and ease of maintenance. The primary architectural
components of GUIs include:

— Presentation Layer: This layer defines the visual elements that users interact
with, such as buttons, sliders, text fields, and graphical layouts. It focuses on the
aesthetics and usability of the interface, ensuring that it is intuitive and visually
appealing.

- Event Handling Mechanism: GUIs are event-driven systems where user in-
teractions, such as clicks or key presses, trigger events. The event handling
mechanism processes these inputs and ensures that the appropriate application
logic is executed in response.

— Application Logic: This layer contains the underlying functionality of the soft-
ware, decoupled from the interface itself. For instance, clicking a "Save" button
might trigger a function in the application logic to write data to a file.

9https://tailwindcss.com/
Ohttps://www.phoenixframework.org/
Thttps://elixir-lang.org/

12

https://tailwindcss.com/
https://www.phoenixframework.org/
https://elixir-lang.org/

2.6 Design Patterns

— Data Model: GUISs often interact with a data model that represents the applica-
tion’s state. The synchronization between the GUI and the data model is crucial
for providing real-time feedback and ensuring that user actions are accurately
reflected.

2.6 Design Patterns

Design patterns [19, 20] are reusable solutions to common problems encountered in
software design and development. They provide a structured approach to solving
recurring challenges, offering proven solutions that can be adapted to different con-
texts. Design patterns help developers create software that is modular, flexible, and
maintainable, by capturing best practices and design principles in a reusable format.

2.6.1 Adapter Pattern

The Adapter Pattern is a structural design pattern that allows incompatible interfaces
to work together. It enables communication between two incompatible interfaces,
allowing them to collaborate without modifying their existing code. The Adapter
Pattern is particularly useful when integrating legacy systems, third-party libraries, or
components with different interfaces.

The key components of the Adapter Pattern are:

— Target Interface: The interface that the client code expects to interact with. This
is the interface that the client code is designed to work with.

— Adaptee Interface: The interface of the existing component that needs to be
adapted. This interface is incompatible with the target interface.

— Adapter: The class that connects the target interface and the adaptee interface,
allowing them to work together. It translates calls from the target interface into
calls to the adaptee interface, ensuring that the two can work together seamlessly.

The Adapter Pattern is commonly used in scenarios where components with different
interfaces need to collaborate, such as when integrating external services, libraries, or
modules into an existing system. By providing a layer of abstraction that translates
between interfaces, the Adapter Pattern promotes interoperability and reusability
without requiring extensive modifications to existing code.

2.6.2 Composite Pattern

The Composite Pattern is a structural design pattern that allows clients to treat individ-
ual objects and compositions of objects uniformly. It enables the creation of hierarchical
structures where individual objects and groups of objects can be manipulated in a
consistent manner. The Composite Pattern is particularly useful when dealing with
tree-like structures or recursive compositions.

The key components of the Composite Pattern are:

13

2 Background

— Component: The interface or abstract class that defines the common operations
for both individual objects and compositions. This component represents the
building block of the composite structure.

- Leaf: The individual objects that make up the composite structure. These are the
basic elements that do not have any children.

— Composite: The class that represents the composite structure, composed of
individual objects and other composite objects. The composite class implements
the operations defined in the component interface and manages the collection of
child components.

The Composite Pattern simplifies the manipulation of complex structures by provid-
ing a unified interface for interacting with individual objects and compositions. Clients
can treat all elements uniformly, regardless of their specific type, enabling recursive
operations and traversal of hierarchical structures.

2.6.3 Abstract Factory Pattern

The Abstract Factory Pattern is a creational design pattern that provides an interface
for creating families of related or dependent objects without specifying their concrete
classes. It ensures that a group of objects created together are compatible and consistent,
promoting flexibility and scalability in software design.

The key components of the Abstract Factory Pattern are:

— Abstract Factory: Declares a set of methods for creating each type of product in a
family, ensuring consistency among them.

— Concrete Factory: Implements the abstract factory interface, providing specific
implementations for each product defined by the abstract factory.

— Abstract Product: Defines the common interface for a family of products, guaran-
teeing that all created objects share a consistent interface.

— Concrete Product: Implements the abstract product interface, representing the
actual objects that are created by the concrete factory.

The Abstract Factory Pattern promotes loose coupling between the client code and
the concrete classes of the products. This allows new families of products to be
introduced without modifying existing code, enhancing maintainability and scalability.
It is particularly useful when a system needs to be configured with one of several
families of related objects, ensuring that all products within a family are used together
consistently.

2.6.4 The Builder Pattern

The Builder Pattern is a creational design pattern that provides a flexible and structured
way to construct complex objects step by step. It is particularly useful when an object
requires multiple optional parameters or configurations, allowing clients to specify only
the attributes they need while maintaining a readable and fluent interface.

14

2.6 Design Patterns

The key components of the Builder Pattern are:

— Builder Interface: Defines the steps required to construct the object, typically
providing methods to set various attributes.

— Concrete Builder: Implements the builder interface, storing the configuration
and assembling the final object.

— Product: The complex object being created, which may require multiple optional
parameters.

— Director (Optional): An optional component that orchestrates the construction
process, ensuring that objects are built following a predefined sequence.

The Builder Pattern improves code maintainability by separating the creation logic
from the object itself, reducing constructor complexity and enhancing readability.
It is commonly used in scenarios where objects have numerous optional attributes,
such as Ul components, configuration objects, and data structures with hierarchical
relationships.

15

Problem Statement

The development of graphical user interfaces (GUISs) is a fundamental aspect of mod-
ern software engineering, bridging the gap between complex systems and end-users
through intuitive and visually appealing interaction mechanisms. However, despite
their importance, GUI development often poses significant challenges for developers,
particularly in scenarios that demand multi-platform compatibility, modular design,
and support for various programming languages.

Traditional approaches to GUI design typically involve a significant amount of man-
ual coding tailored to specific frameworks or languages, resulting in high development
effort, limited reusability, and increased potential for errors. Moreover, adapting GUIs
to different programming environments further complicates the process. These chal-
lenges are particularly pronounced in projects requiring flexibility and scalability, where
changes in requirements can necessitate substantial rewrites or modifications to the
existing codebase.

To address these issues, the field of code generation has emerged as a promising
approach. By automating the creation of executable code from high-level specifications,
code generation significantly reduces development overhead, improves consistency
across projects, and minimizes human error. Domain-Specific Languages (DSLs) are
particularly well-suited for this task, as they allow developers to express solutions in
terms of domain-specific abstractions, thereby encapsulating complexity and enhancing
productivity.

However, existing tools and frameworks for code generation often suffer from critical
limitations. They may lack the flexibility to accommodate diverse application domains,
provide insufficient modularity for reusing components, or impose constraints on the
languages or platforms they support. This gap highlights the need for a solution that
combines the expressiveness of DSLs with the configurability of Software Product Lines
(SPLs) to generate modular, language-agnostic GUI code tailored to specific project
requirements.

3.1 Existing Technologies and Limitations
In the domain of graphical user interface (GUI) development and code generation,
numerous technologies and frameworks have emerged to simplify the process and

reduce manual coding effort. These tools typically offer solutions for creating and
managing GUIs in specific programming environments, streamlining workflows, and

17

3 Problem Statement

generating code. However, despite their contributions, existing technologies often
fall short in addressing the needs of modern, highly modular, and language-agnostic
systems.

3.1.1 Slint: A Declarative Toolkit for GUI Development

Slint' is a modern toolkit designed to streamline the development of graphical user
interfaces (GUIs) through a declarative and cross-platform approach. By providing a
dedicated domain-specific language (DSL) and focusing on efficiency and simplicity,
Slint addresses many common challenges in GUI creation, such as reducing manual
coding effort and ensuring compatibility across diverse platforms. Its design goals are
centered on Scalable, Lightweight, Intuitive and NaTive GUI development.

Overview and Architecture

At its core, Slint employs a declarative DSL to define the structure, layout, and behavior
of GUIs. This language allows developers to describe interfaces using high-level
abstractions, reducing the need for imperative programming. The DSL abstracts away
the complexities of underlying GUI frameworks, letting developers focus on design
and logic rather than low-level implementation details.

Display

o

Input Events (GPU/Software Rendering
Compiled Ul
slint Design File Pl Ul Elements Tree ‘

e 1 Properties <«
Application
! Callbacks <> Source Code

Vo ! (C++/Rust/Javascript)

Native... : E : E
Slint Compiler Models «

Slint Runtime

Figure 3.1. Slint’s architecture is built around three primary components: the DSL Compiler, Runtime
Engine, and Backend Adapters. The DSL Compiler translates high-level interface definitions into
executable code, the Runtime Engine manages dynamic aspects of GUIs, and Backend Adapters enable
integration with different platforms .

Slint’s architecture is built around three primary components as shown in Figure 3.1:

Yhttps://slint.dev/

18

https://slint.dev/

3.1 Existing Technologies and Limitations

— The DSL Compiler: Translates high-level interface definitions into code that can
be executed by supported backends. This ensures that GUIs are consistently
rendered across platforms.

— Runtime Engine: Manages the dynamic aspects of GUIs, such as animations,
user interactions, and state changes. It uses a reactive programming model,
automatically updating the interface in response to changes in application state.

- Backend Adapters: Enable the generated code to integrate with different plat-
forms, such as desktop, web, and embedded systems. These adapters ensure that
the same interface definition can be rendered consistently regardless of the target
environment.

Supported Platforms and Languages

Slint is designed with cross-platform compatibility in mind, making it suitable for a
wide range of applications. It supports:

- Desktop Environments: GUIs can be rendered on desktop operating systems like
Windows, macOS, and Linux.

— Web Applications: Through its JavaScript backend, Slint enables seamless de-
ployment of GUIs in web browsers.

— Embedded Systems: Its lightweight design and minimal resource requirements
make it particularly well-suited for embedded devices with constrained hardware.

- Mobile Platforms: While not currently supported, Slint has the potential to
extend its reach to mobile platforms like Android and iOS.

In terms of programming languages, Slint primarily targets Rust?, C++, and JavaScript,
providing robust integration and efficient code generation for these ecosystems.

Strengths of Slint

One of the key strengths of Slint lies in its simplicity and accessibility. By using a DSL,
it reduces the learning curve for developers who may not be familiar with low-level
GUI programming. Additionally, the framework’s declarative nature allows for a clear
separation of concerns, making it easier to maintain and scale applications.

Another significant advantage is its cross-platform support. Developers can define a
GUI once and deploy it across multiple platforms without significant modifications,
ensuring consistency and reducing development time. This is particularly valuable
in environments where applications need to operate on both desktop and embedded
devices.

The reactive programming model is another standout feature. By automatically
managing updates to the GUI in response to state changes, Slint reduces the need for
manual event handling, which simplifies development and minimizes potential bugs.

2https://www.rust-lang.org/

19

https://www.rust-lang.org/

3 Problem Statement

Limitations of Slint

Despite its strengths, Slint has some limitations that restrict its applicability in certain
scenarios.

One notable constraint is its limited language support. While it performs well in
Rust, C++, and JavaScript, it does not natively support other widely used programming
languages. Extending Slint to a new language is not straightforward due to its tightly
integrated runtime and rendering engine, which are designed with specific language
bindings in mind. Slint requires deep integration at the runtime level, making the
process more complex and time-consuming.

Furthermore, while Slint’s architecture supports modular backends, enabling devel-
opers to create custom platform abstractions and window adapters, this modularity
is primarily focused on the rendering layer and platform-specific behaviors. The DSL
itself remains monolithic in design, meaning that all features and components are
bundled together, with no built-in mechanism to selectively enable or disable specific
functionalities. This design choice increases the difficulty of porting Slint to new
ecosystems, as it requires adapting not just the syntax and semantics but also the entire
rendering pipeline to fit the constraints of the target language.

3.1.2 Glade: A GUI Designer for GNOME

Glade3 is a versatile graphical user interface (GUI) designer primarily developed for
building GTK-based applications. It enables developers to design interfaces visually,
facilitating rapid prototyping and development. Part of the GNOME* ecosystem, Glade
is widely adopted for creating applications that integrate seamlessly with GTK and the
GNOME desktop environment.

Overview and Architecture

At its core, Glade follows a WYSIWYG (What You See Is What You Get) approach,
allowing developers to construct interfaces by dragging and dropping widgets onto
a visual canvas. This design paradigm simplifies GUI creation by abstracting the
complexities of manual code writing, enabling developers to focus on the aesthetics
and functionality of the interface.

Glade’s design process centers on the XML-based UI description. Interfaces created
with Glade are stored in .ui files, which are XML [10] representations of the GUI.
These files can be loaded at runtime using GTK libraries, eliminating the need for
code generation or manual implementation of the GUI layout. This decoupling of
interface design from application logic promotes cleaner code organization and easier
maintenance.

The tool integrates tightly with the GTK ecosystem, supporting an extensive array
of widgets, properties, and signals. Developers can fine-tune widget behavior, layout,

3https://glade.gnome.org/
4https://www.gnome.org/

20

https://glade.gnome.org/
https://www.gnome.org/

3.1 Existing Technologies and Limitations

and appearance, ensuring flexibility and customization to meet specific application
requirements.

Code Sketching in Glade

An important feature of Glade is its support for code sketching. Code sketchers are
tools or extensions that generate source code from Glade’s .ui files. Most commonly,
these sketchers produce code that utilizes libglade and the .ui file to dynamically
create the GUI at runtime. This approach maintains the separation of concerns between
interface design and application logic.

Some code sketchers, however, go further by generating raw source code that does
not depend on libglade or the original .ui file. These tools embed the interface
logic directly into the application’s source code, which may be beneficial in scenarios
requiring standalone codebases without runtime dependencies. While this increases
independence, it also ties the GUI more closely to the application, reducing flexibility
for future modifications.

Supported Platforms

Glade and its GTK-generated GUIs are inherently cross-platform, capable of running
on Linux, Windows, and macOS. However, Glade itself is most commonly used within
Linux environments due to its integration with GNOME. The cross-platform nature of
GTK ensures consistent behavior and appearance across supported platforms, making
Glade a robust choice for developers targeting diverse deployment environments.

Strengths of Glade

Glade provides significant advantages for developers such as its visual design approach,
which allows developers to construct user interfaces using a drag-and-drop interface.
Another key benefit of Glade lies in its XML-based workflow. The generation of .ui
files to define the GUI separates the user interface from the core application logic. This
separation promotes better organization, easier maintenance, and greater modularity,
as developers can update or redesign the GUI without altering the underlying logic.
This approach aligns with modern software engineering principles, such as separation
of concerns, making it a valuable asset for maintaining code quality in larger projects.
The tool’s support for code sketching adds another layer of flexibility. Developers
can choose to generate either libglade-based code, which dynamically loads the .ui
file at runtime, or raw source code that integrates the GUI directly into the application.
This flexibility allows developers to adopt the approach that best fits their project
requirements, balancing runtime modularity and standalone code generation as needed.

Limitations of Glade

Despite its strengths, Glade has limitations that can impact its effectiveness in certain
scenarios. One of the most prominent drawbacks is its tight coupling with the GTK

21

3 Problem Statement

framework. While GTK is powerful and versatile, this dependency restricts Glade’s
applicability to projects outside the GTK ecosystem. Developers working with other
frameworks or technologies may find Glade unsuitable, requiring them to look for
alternative tools.

Another limitation of Glade is its reliance on monolithic .ui files to define user
interfaces. While these XML-based descriptions provide a structured way to represent
GUIs, they can lack modularity. For instance, developers may struggle to selectively
enable or disable specific interface components or features without modifying the
entire .ui file. Although GTK allows loading separate .ui files dynamically, Glade
itself does not provide built-in mechanisms for defining reusable templates or modular
components that can be easily imported across different UI designs. This limitation
can pose challenges for projects requiring highly customizable or dynamic Uls, as
developers must manually structure their interface definitions and handle component
reuse programmatically.

Finally, Glade’s design and workflow are heavily optimized for GNOME environ-
ments, potentially resulting in less polished experiences on non-Linux platforms.
Although GTK ensures cross-platform compatibility, developers targeting Windows or
macOS may encounter inconsistencies or additional challenges when fine-tuning their
applications for these environments.

3.1.3 Flutter: A Cross-Platform Ul Framework

Flutter, developed by Google, is a popular open-source Ul framework designed for
creating natively compiled applications for mobile, web, and desktop from a single
codebase. Since its initial release in 2017, Flutter has gained significant traction among
developers due to its innovative approach to Ul development and its ability to produce
highly performant, visually consistent applications across platforms.

Overview and Architecture

Flutter is built on the Dart programming language>, which plays a crucial role in
enabling its features. The framework employs a unique rendering engine that bypasses
traditional platform widgets, instead rendering the UI components directly on a canvas.
This architecture allows Flutter to maintain consistent design and behavior across
platforms while providing complete control over the application’s appearance and
performance.

The Ul in Flutter is defined using a declarative approach, where developers describe
the desired state of the interface and let the framework handle the rendering updates.
This method simplifies the development process, particularly for complex and dynamic
Uls. Flutter’s rich set of pre-designed widgets caters to both material design and
iOS-style applications, ensuring that developers can create visually appealing and
platform-appropriate interfaces.

Shttps://dart.dev/

22

https://dart.dev/

3.1 Existing Technologies and Limitations

Framework
Dart

Material Cupertino
Widgets

Rendering

Animation m Gestures

Foundation

cne

Render Surfa Setu Native Plugins App Packaging

Embedder

Platform-specific

Figure 3.2. Flutter’s architecture is built around three primary layers: the Framework Layer, Engine
Layer, and Embedder Layer. The framework provides foundational libraries and widgets, the engine
handles rendering and platform interactions, and the embedder integrates Flutter with the underlying
operating system .

Flutter’s architecture is built around three primary layers as shown in Figure 3.2:

- Framework Layer: This layer provides a collection of foundational libraries and
pre-built widgets that developers use to design their interfaces. It includes support
for animations, gestures, and platform-specific features.

— Engine Layer: The engine, written in C++, handles rendering, input, and platform-
specific interactions. It uses Skia®, a 2D graphics library, to draw the UI elements
directly on the screen.

— Embedder Layer: This layer integrates the Flutter engine with the underlying
operating system, enabling the application to run on various platforms, such as
Android, i0OS, Windows, macOS, Linux, and web browsers.

Strengths of Flutter

One of Flutter’s standout strengths is its "write once, run anywhere" philosophy.
Developers can use a single codebase to create applications that run on multiple

6https://skia.org/

23

https://skia.org/

3 Problem Statement

platforms, reducing development time and effort significantly. The framework’s hot
reload feature further accelerates the development cycle by allowing developers to see
changes in real-time without restarting the application.

Flutter’s rendering engine enables high performance and pixel-perfect control over
the Ul, ensuring that applications look and behave consistently across platforms. This
feature is particularly advantageous for developers targeting devices with varying
screen sizes, resolutions, and operating systems.

Additionally, the declarative UI paradigm promotes clarity and maintainability in the
codebase. Flutter’s widget-centric approach makes it easy to break the UI into reusable
components, enhancing both modularity and scalability.

Limitations of Flutter

Despite its advantages, Flutter has some limitations. The reliance on the Dart pro-
gramming language can be a barrier for developers unfamiliar with it. While Dart is
relatively easy to learn, its ecosystem and community are smaller compared to other
mainstream languages, which may result in fewer resources and libraries.

Flutter’s rendering engine, while powerful, increases the application’s binary size,
which can be a concern for mobile platforms with strict size limitations. Furthermore,
the approach of bypassing native widgets means that Flutter apps may not feel entirely
native to some users, as they do not use the system’s built-in Ul components.

Finally, while Flutter is cross-platform, achieving complete parity across all platforms
requires additional effort. For example, some platform-specific features may need
custom implementations using platform channels or third-party plugins.

3.2 Research Objectives

The existing technologies and frameworks discussed above provide valuable insights
into the challenges and opportunities in graphical user interface (GUI) development
and code generation. However, each solution has its limitations.

- Glade: While efficient for GTK applications, Glade lacks flexibility and modularity,
relying heavily on monolithic .ui files and tightly coupling the tool to the GTK
ecosystem. This restricts its applicability to other frameworks or platforms,
making it difficult to extend or modify without altering the underlying code
structure.

- Slint: Slint excels in supporting Rust, C++, and JavaScript but struggles with
adaptability for other programming languages. Its DSL is monolithic, and it
doesn’t allow for selective modularity or customization, which limits its flexibility
for developers working on diverse platforms or in different language ecosystems.

— Flutter: Although Flutter offers an attractive cross-platform development envi-
ronment, it comes with its own set of challenges. It requires specific tools and
dependencies, making it less suitable for developers who need to integrate with
existing systems or work within specific language ecosystems.

24

3.2 Research Objectives

These limitations highlight challenges in language support, modularity, and platform
compatibility that impede the broader applicability of these tools. To address these
shortcomings, this research aims to develop a novel approach that combines the
strengths of domain-specific languages (DSLs) and software product lines (SPLs) to
generate modular, language-agnostic GUI code tailored to specific project requirements.

The primary objectives of this research are as follows:

1. Develop a Domain-Specific Language (DSL) for GUI Specification: Create a DSL
that allows developers to define GUIs using high-level abstractions, encapsulating
common design patterns and interactions. The DSL should support declarative
syntax, enabling developers to focus on the structure and behavior of the interface
rather than low-level implementation details.

2. Implement a Code Generation Framework for GUIs: Develop a code generation
framework that translates DSL specifications into executable code for various
programming languages and platforms. The framework should support modular
backends, enabling developers to target different environments without modifying
the DSL definitions.

3. Explore Software Product Line (SPL) Concepts for GUI Generation: Investigate
the application of SPL concepts to GUI generation, allowing developers to config-
ure and customize the generated code based on specific project requirements. By
leveraging SPL variability mechanisms, developers can create highly adaptable
and reusable GUI components.

By achieving these objectives, this research aims to advance the state of the art in
GUI development and code generation, providing developers with a flexible, efficient,
and language-agnostic solution for creating modern graphical user interfaces.

25

Architecture

This chapter explore into the theoretical framework and architecture designed to
address the challenges identified in the previous chapter. The proposed solution aims
to streamline the generation of graphical user interfaces (GUIs) across multiple target
languages while maintaining flexibility, modularity, and scalability. Central to the
approach is an architecture composed of distinct layers, each serving a specific role
within the system.

The architecture is structured to emphasize decoupling and modularity, ensuring
that each layer can evolve independently while maintaining compatibility. At its core
lies the Library Layer, which encapsulates the core logic, rules, and abstractions for
constructing GUIs. This library, designed with a high degree of flexibility, can function
independently of the Domain-Specific Language (DSL), offering the possibility of direct
usage for more granular control.

The DSL Layer, on the other hand, provides a high-level abstraction that simplifies
the creation of GUIs by allowing developers to compose interfaces using a concise,
domain-specific syntax. The DSL leverages the foundational logic provided by the
library to transform abstract specifications into tangible components. This design choice
aims at hiding the complexity of GUI creation from the end user, promoting ease of
use and efficiency.

To support multiple target languages, the architecture integrates adapters, which
serve as connection between the core logic and the specific requirements of each
language. This layer aims at ensuring that the generated code adheres to the conventions
and practices of the respective language, guaranteeing compatibility and usability.

Finally, the entire system is designed with Software Product Line (SPL) principles,
enabling the creation of modular versions of the application to specific use cases. Each
module within the system can be selectively included or excluded based on the desired
functionality.

27

4 Architecture

DSL
LIBRARY

A | A o oo A, | ADAPTERS

Ly | Ly o o L,—1| LANGUAGES

—_— AN

Figure g4.1. The architecture of the system is organized into three primary layers: the DSL layer, which
provides the language for GUI definitions; the Library layer, which houses abstractions and manages
the logic for GUI element representation; and the Adapters layer, where specific code generators
map the abstract definitions to target languages. Below the red line are the targeted programming
languages, representing external systems outside the control of the developed solution. The modular
design aims at extensibility and supports multiple target languages via dedicated adapters, enhancing
flexibility and maintainability.

This chapter is organized following the what’s shown in Figure 4.1, with each section
focusing on a specific layer of the architecture:

- Library Layer: This section explores the foundational abstractions and patterns
used to construct GUIs, emphasizing the independence and flexibility of the
library.

— Adapter Layer: The role of adapters in connecting the library with multiple
languages and ensuring modularity will be discussed.

— DSL Layer: The functionality and purpose of the DSL, particularly its integration
with the library, are presented here.

- Software Product Line (SPL) Integration: Finally, the SPL approach used to
achieve modularity and feature management is explained.

By structuring the architecture in this way, the system aims to address the identified
limitations of existing solutions, particularly the lack of modularity and flexibility, while
offering a robust foundation for future extensions and integrations.

4.1 Library Layer

The Library Layer represents the foundation of the system’s architecture, housing
the essential logic, rules, and components necessary for constructing graphical user
interfaces (GUIs). This layer is designed to function independently of the Domain-
Specific Language (DSL), ensuring its versatility for various applications. By decoupling
the library from the DSL, the architecture remains flexible and adaptable, enabling
the library to be used programmatically or in combination with the DSL for enhanced
abstraction.

At its core, the library is organized around the concept of abstract and concrete
components. Abstract components define the general behavior and characteristics of

28

4.1 Library Layer

GUI elements, serving as templates or blueprints for their implementation. For example,
a generic button may define attributes such as its label and the events it can handle,
but leave the specifics of how these are rendered or executed to be implemented by
concrete versions of the button.

Concrete components, on the other hand, provide the specific implementation details
for each target programming language. For instance, the visual representation and
behavior of a button in Python or Java may vary significantly, and concrete components
handle these differences. This distinction between abstract and concrete components
aims at keep the library extensible and adaptable to multiple languages without
sacrificing consistency or functionality.

The library employs the Composite Design Pattern to manage the hierarchical struc-
ture of GUIs. Each GUI component can act as either a composite, capable of containing
other components, or a leaf, which represents standalone elements. This pattern allows
developers to construct complex GUIs by nesting smaller, reusable components within
larger structures.

For instance, a container component like a panel or a window can act as a composite,
holding child components such as buttons, text fields, or other containers. This
hierarchical organization aims at keep the GUI structured and that rules governing
component relationships are enforced at the library level. This approach enhances
scalability, as developers can create intricate GUIs by composing simpler building
blocks, and reusability, since components can be shared across different parts of the
interface.

l root | text

grid layout
TOW O TOW 1 TIOwW 2 row 3 - .
/ \ form
col o col o col o col o col 1 > fields
input text

(text) (table) (form) (text) (button)

input text

fields input text

\ J

[input text][input text][input text] text

J \)

Figure 4.2. An example illustrating the Composite Design Pattern in a GUL The left side shows the
abstract structure, while the right side displays the resulting visual layout.

29

4 Architecture

An example of this pattern is illustrated in Figure 4.2, which shows both the abstract
structure of a GUI and its corresponding visual representation. In this example, a grid
layout acts as a composite, organizing several rows and columns, each of which contains
either other composite components (e.g., a form) or individual leaf components (e.g.,
text or button). This dual representation helps demonstrate how the logical structure of
a GUI maps directly to its visual layout.

To manage the complexity of creating and configuring these components, the archi-
tecture employs the Builder Pattern. Each abstract component provides a dedicated
builder class, which encapsulates the logic for incrementally setting fields and config-
uring properties. This design simplifies the process of creating instances of complex
components, ensuring that they are always properly initialized before use.

A notable feature of the library is its complete independence from the DSL. While
the DSL simplifies the process of creating GUISs by offering a high-level abstraction, the
library itself can function autonomously. Developers have the option to directly use the
library to construct GUIs without relying on the DSL. This design choice aims at keep
the library flexible and can help to various use cases, including those where the DSL
might not be suitable or required.

Moreover, the independence of the library allows it to be easily integrated with
alternative frameworks or tools in the future. By isolating the core functionality of GUI
creation within the library, the system avoids tying itself to a specific DSL, enhancing
its longevity and adaptability.

The library is inherently modular, with each component implemented as a separate,
self-contained module. This modularity is in line with the principles of Software
Product Lines (SPLs), enabling the creation of customized versions of the library that
include only the necessary features and components. For example, a deployment
targeting a specific platform or language might only include the relevant concrete
components, reducing overhead and ensuring efficiency.

Additionally, the modular design supports scalability by allowing new components
to be added without disrupting the existing structure. This is particularly beneficial
as new requirements or target languages emerge, ensuring that the library can evolve
alongside changing needs.

In conclusion, the Library Layer is the cornerstone of the system’s architecture. Its
robust, modular design aims at flexibility and adaptability, while the use of patterns
like Composite provides a structured and reusable approach to GUI construction. By
remaining independent of the DSL, the library serves as a versatile and extensible
foundation for the entire system.

4.2 Adapter Layer

The adapter layer serves as a critical intermediary between the core logic defined in the
library and the specific requirements of the target programming languages. Its primary
role is to aim at keep the abstract components and structures defined in the library
are correctly translated into language-specific implementations. By encapsulating

30

4.2 Adapter Layer

these translations, adapters decouple the library’s core logic from the complexities of
individual languages, thus promoting flexibility and reusability.

In this architecture, adapters act as language-specific translators. Each adapter is
tailored to a particular target language, such as Python, JavaScript, or C++, and defines
the mechanisms required to generate code that aligns with the conventions, syntax, and
idioms of that language. This design choice aims at the integration of the generated
GUIs into existing codebases seamlessly, following the best practices of the target
platform.

One of the key strengths of the adapter layer is its modularity. Each adapter operates
independently of the others, meaning that the system can support multiple target
languages without requiring changes to the library or other adapters. This modularity
also simplifies the process of adding support for new languages. To include a new
language, developers need only implement a new adapter that adheres to the predefined
interfaces established by the library. This approach minimizes the risk of introducing
errors or dependencies that could compromise the stability of the overall system.

Moreover, the adapter layer aims at create an architecture that is robust in handling
variations between languages. For instance, certain GUI frameworks or programming
languages may impose specific constraints or offer unique features that must be accom-
modated during code generation. Adapters handle these variations by customizing
the way components are instantiated, configured, and rendered. This abstraction not
only simplifies the development process but also aims at geenerating GUISs that are
consistent across different platforms.

Another crucial element of the architecture is the use of factories for generating
concrete components to specific target languages. Each factory is dedicated to a
single programming language and contains methods designed to create various Ul
components, such as buttons, containers, or text fields, according to the syntax and
conventions of the respective language.

When a user specifies a target language, the system dynamically selects the ap-
propriate factory. This factory then generates the required components, which are
subsequently assembled into the final Ul structure using the composite pattern. This
aims at creating an approach for code generation that is both modular and scalable.

For example, if the target language is Java, the corresponding factory would generate
UI elements compatible with Java-based GUI frameworks like JavaFX. Similarly, a
factory for Python will generate code for Python-based GUI frameworks such as
Tkinter". By isolating the generation logic within language-specific factories, the library
achieves a high degree of separation of concerns, making it easier to add support for
new languages in the future without disrupting existing functionality.

By isolating language-specific concerns within the adapter layer, the architecture
adheres to the principles of separation of concerns and single responsibility. The
library focuses solely on defining the core logic and structure of GUIs, while adapters
handle the task of translating this logic into concrete implementations. This separation
enhances maintainability, as updates or modifications to the library do not require

Thttps://docs.python.org/3/library/tkinter.html

31

https://docs.python.org/3/library/tkinter.html

4 Architecture

changes to the adapters, and vice versa.

In summary, the adapter layer plays a pivotal role in closing the gap between the
abstract, language-agnostic logic of the library and the concrete, language-specific
implementations required for GUI generation. Its modular and extensible design
aims at creating an architecture that the can evolve to support new languages and
frameworks while maintaining the integrity and reusability of its core components.

4.3 DSL Layer

The DSL in this architecture serves as a high-level, human-readable interface for
defining the structure and behavior of graphical user interfaces (GUIs). While the
library encapsulates the logic and components necessary for GUI generation, the DSL
abstracts this complexity, offering users a simplified and intuitive way to specify their
desired GUI elements and configurations.

At its core, the DSL allows users to describe the hierarchical structure of a GUI in a
manner similar to constructing a document object model*> (DOM). Each element in the
DSL corresponds to a component defined in the library, such as buttons, containers,
or input fields. By leveraging the composite design pattern, the DSL aims to support
the nesting and combination of components in ways that align with the intended
behavior of the GUIL In addition, the DSL integrates the Builder Pattern from the
abstract components of the library to configure the fields required by the DSL code
written by the user.

The separation between the DSL and the library is a deliberate design choice aimed at
promoting modularity and adaptability. The library operates independently of the DSL,
defining all GUI components and their interactions. This independence aims to allows
the library to be used on its own, without requiring the DSL. For example, developers
could directly instantiate and configure library components programmatically if desired.
However, such an approach would be labor-intensive and prone to errors, particularly
for complex GUISs.

The DSL, on the other hand, simplifies the use of the library by providing a higher-
level syntax for describing GUIs. Users can define what they want their interface to
look like and how it should behave without delving into the details of instantiating
and configuring components manually. The DSL effectively reduces the barrier to entry
for developers who may not have extensive experience with the underlying library,
enabling a wider range of users to leverage its capabilities.

A significant advantage of this design is the potential to decouple the DSL from
the implementation. Since the library is not dependent on the DSL, it is possible to
replace or modify the DSL in the future without requiring changes to the library. This
decoupling promotes long-term flexibility, allowing the architecture to adapt to new
paradigms or tools for defining GUISs.

The DSL also integrates closely with the modular design enabled by the software
product line (SPL). Each component of the DSL is associated with a corresponding

2https://dom.spec.whatwg.org/

32

https://dom.spec.whatwg.org/

4.4 Software Product Line (SPL) Integration

module in the library, ensuring that the DSL can only reference components that are
included in the current configuration. This alignment between the DSL and the SPL
helps maintain consistency between the DSL and the library’s capabilities, reducing the
risk of errors caused by referencing unavailable components.

In summary, the DSL serves as a user-friendly interface for leveraging the power
of the library in defining GUIs. Its abstraction reduces complexity, streamlines the
development process, and enhances accessibility for developers. By maintaining in-
dependence from the library and aligning with the SPL, the DSL supports flexibility,
modularity, and long-term adaptability, making it a crucial component of the overall
architecture.

4.4 Software Product Line (SPL) Integration

The Software Product Line (SPL) approach is a cornerstone of the architecture, enabling
the system to achieve high levels of modularity, flexibility, and configurability. SPL is
particularly well-suited to the requirements of this project, as it allows for the creation
of versions of the software by assembling only the components necessary for specific
use cases.

At its core, the SPL organizes the system into distinct modules, each representing
a specific feature or functionality. In this architecture, these modules correspond to
the various components of the library and DSL. For instance, there are modules for
abstract library components, concrete implementations for specific languages, and the
grammar definitions of the DSL. By isolating these elements into self-contained units,
the SPL makes it possible to customize the system dynamically.

The modularity introduced by SPL promotes a highly adaptable architecture. Devel-
opers can selectively include or exclude modules depending on the requirements of
a particular use case. For example, if a project targets only a specific GUI language,
such as Flutter, the SPL can produce a configuration containing only the Flutter-related
modules, omitting unnecessary elements. This not only reduces the footprint of the
resulting application but also simplifies its structure, making it easier to maintain and
debug.

Another advantage of this modular approach is the ability to scale the system. As
new GUI languages or frameworks emerge, additional modules can be created and
seamlessly integrated into the SPL. This extensibility helps keep the system relevant
and capable of accommodating evolving requirements without requiring significant
architectural changes.

The SPL aims at creating a consistent relationship between the DSL and the library by
tightly controlling the components available in a given configuration. The DSL grammar
is designed to correspond directly to the modules included in the library. For instance,
if a particular button or container is part of the library configuration, the DSL grammar
will support its definition. Conversely, if a component is excluded from the library, the
DSL will not generate references to it. This alignment eliminates potential mismatches,
ensuring that the DSL remains valid and functional for the current configuration.

33

4 Architecture

One of the primary benefits of the SPL approach is its ability to address the challenge
of feature variability. Traditional monolithic systems often include all possible features,
leading to bloated and inefficient implementations. In contrast, the SPL approach
allows for lean configurations to specific requirements, reducing resource consumption
and improving performance.

The SPL also enhances maintainability. Since each module is self-contained, updates
or bug fixes can be applied in isolation, reducing the risk of unintended side effects.
Moreover, the modular design simplifies testing, as individual modules can be verified
independently before being integrated into the larger system.

In practice, the SPL enables users of the system to generate customized versions
of the software that align with their specific needs. This could involve selecting only
the necessary GUI components, supporting only the desired target languages, or
enabling specific features of the DSL. The SPL handles the complex task of assembling
these elements into a cohesive and functional system, allowing users to focus on their
application rather than the underlying infrastructure.

A key aspect of this process is the way configurations are used to collect only the
necessary dependencies and generate an optimized variant of the DSL. Instead of in-
cluding all possible features, which could lead to unnecessary complexity and increased
resource consumption, the SPL assembles a streamlined version that contains only the
selected functionalities. This prevents the DSL from becoming bloated with unused
features and ensures that the final system remains efficient and maintainable. The
collection process relies on predefined configuration rules and dependency resolution
mechanisms, which determine how individual modules interact and ensure that all
required components are included while excluding unnecessary ones.

Overall, the SPL is a critical enabler of the architecture’s goals. By providing mod-
ularity, configurability, and scalability, it supports the creation of efficient, targeted
solutions while maintaining a high degree of adaptability. This aims to create a system
that remains robust, future-proof, and capable of meeting a diverse range of user
requirements.

34

Implementation

This chapter digs into the practical realization of the architecture outlined in the
previous section. While the design provides a high-level perspective of the system'’s
structure and interactions, the implementation details reveal how these concepts are
translated into a working system. The primary objective of this chapter is to illustrate
how the theoretical components, such as the library, DSL, adapters, and SPL module,
are brought to life through code, tools, and frameworks.

The implementation process emphasizes modularity and maintainability, reflecting
the core principles of the system’s design. Each module of the project, ranging from the
abstract library and DSL to the SPL utilities, is implemented as a standalone unit with
clear interfaces and responsibilities. This modularity not only simplifies development
and testing but also supports future extensibility, such as adding new languages or
features.

The chapter is organized to follow the system’s core modules, discussing the imple-
mentation details of each. Key topics include the structure and functionality of the
library, the DSL grammar and parser, the adapter mechanisms for language-specific
code generation, and the tools provided by the SPL module. Additionally, this chapter
highlights the use of programming patterns, such as the composite and factory patterns,
and the strategies employed to ensure compatibility across supported platforms.

By exploring these aspects, this chapter demonstrates how the theoretical concepts
are realized in code and how the overall system achieves its goal of facilitating modular
and feature-rich Ul code generation.

5.1 Technologies Used

The development of this project is supported by a carefully selected set of technologies,
chosen for their ability to facilitate modularity, maintainability, and extensibility. The
main technologies employed include Java 17, Neverlang, and Gradle. Java 17 serves as
the primary programming language for the project. Its robust ecosystem, object-oriented
paradigm, and extensive library support make it a versatile choice for building complex
systems. Java also provides strong support for implementing design patterns, such as
the Composite Pattern and Abstract Factory Pattern, which are crucial for the modular
architecture of the project. Additionally, its platform independence ensures that the
project can be executed across different environments without requiring significant
changes.

35

5 Implementation

Neverlang is used as the foundation for developing the domain-specific language
(DSL). This language workbench simplifies the creation of DSLs by providing tools
for defining grammar, syntax, and semantics in a modular manner. The modularity
of Neverlang aligns well with the overall design philosophy of the project, allowing
components to be developed independently and integrated seamlessly.

Gradle is employed as the build automation tool, providing a structured approach
to managing the project’s modular organization. Its flexibility allows for an efficient
build process, with each folder in the project corresponding to a distinct module.
This modular setup ensures clear separation of concerns, streamlines the development
process, and simplifies maintenance. Gradle’s ability to manage dependencies and
configurations efficiently is instrumental in supporting the project’s dynamic nature.

Together, these technologies form the foundation of the project, enabling the devel-
opment of a modular and extensible system while maintaining clarity and efficiency
throughout the implementation process.

5.1.1 Target Languages

The system is designed to generate user interfaces in multiple programming languages,
each tailored to different environments and use cases. The three target languages
currently supported are HTML, Python (Tkinter), and Elixir (Phoenix LiveView). Each
of these languages follows a distinct paradigm and requires different handling when
generating Ul components.

The three supported target languages represent distinct paradigms: HTML provides
a simple, standalone web UI; Python (Tkinter) generates a desktop GUI with a hierar-
chical component structure; and Elixir (Phoenix LiveView) integrates into an existing
framework, enabling dynamic, real-time web applications. This variety allows users
to generate Ul code suited to their specific deployment needs, whether for a simple
webpage, a local desktop application, or a complex web system.

HTML (Bootstrap-based)

The HTML output consists of a standalone file that includes the entire Ul structure.
The generated HTML uses Bootstrap for styling and incorporates minimal JavaScript to
handle user interactions. The JavaScript primarily enables event callbacks, allowing UI
components to invoke user-defined functions. Since HTML is inherently web-based,
the generated files can be deployed and accessed in any modern browser without
additional setup.

Python (Tkinter)

Unlike HTML, the Python output is intended for desktop applications. The generated
code uses Tkinter, a lightweight GUI toolkit included with Python. Since Tkinter
requires a hierarchical structure where each component belongs to a parent (or "master"),
the system ensures that layouts correctly pass down the required references to their

36

5.2 Project Structure

child components. This makes the Python-generated UI fundamentally different from
the web-based approach, as it directly integrates with the host system instead of
running in a browser.

Elixir (Phoenix LiveView)

The Elixir output targets Phoenix LiveView, a modern web framework that enables
real-time, server-rendered applications. Unlike the standalone nature of HTML output,
Phoenix LiveView requires the generated UI code to be integrated within an existing
project structure. The UI elements are designed to work within Phoenix templates,
following the conventions of LiveView components. The system also uses Tailwind CSS
for styling, ensuring a modern and responsive design. Because LiveView dynamically
updates the Ul based on server-side events, this approach is more interactive than static
HTML while still being web-based.

5.2 Project Structure

The project is organized into a modular architecture that separates different functionali-
ties into distinct folders, ensuring scalability, maintainability, and clarity. This structure
reflects the conceptual layers of the system and allows for targeted development and
testing. Below is an overview of the main components of the project structure:

L gUIdE-TaD ot Library module
oo Core functionalities of the library
COMPONENTS .iivviiiiiiiiiiiiiie e, Abstract definitions of the components
layouts .ooveviiiii Abstract definitions of the layouts
AdAPTE S ittt e Language-specific adapters
| target languagecccc..... Adapter for a specific target language

COME iirriiriinniineineainannens Core functionalities specific to the language
components ...Concrete implementation of components for the language
layoutso..s Concrete implementation of layouts for the language
UELT oo Utility module for the library

I T = o 3 DSL module
o = Core functionalities of the DSL
componentsc.iieiiil. DSL-specific implementation of the components
1ayouts ..oveviiiiiiiiiiiii DSL-specific implementation of the layouts
neverlang-CcommoNnsSceieeeveereinnainanns Utilities for Neverlang integration

o 01 o ==Y o SPL module

o TV e 1= - 1 Generated SPL module

Figure 5.1. Overview of the project folder structure, highlighting the modular organization of the library,
DSL, SPL.

37

5 Implementation

5.2.1 guide-1lib: Library Module

The guide-1ib folder contains the core functionalities and abstract definitions that form
the backbone of the application. This module is responsible for defining the structure
and behavior of the library components, which can be utilized independently of the
DSL. Key subfolders include:

- core: Houses the essential utilities and functionality required by the library.

— components: Provides abstract definitions for the GUI components, such as but-
tons, text fields, and other interface elements.

- layouts: Contains abstract definitions for layout structures, specifying how
components are organized spatially.

- adapters: Implements language-specific variations of the library using modular
adapters. Each adapter folder contains submodules for:
e core: Core functionality specific to the target language.
e components: Concrete implementations of the GUI components for the lan-
guage.

e layouts: Concrete implementations of the layout structures for the language.

util: Includes utility classes and functions shared across the library.

5.2.2 guide-dsl: DSL Module

The guide-ds1 folder defines the domain-specific language (DSL) used to describe the
desired GUI. This module provides a high-level abstraction over the library to simplify
the creation of user interfaces. Its submodules include:

- core: Implements the core grammar and parsing logic for the DSL.

— components: Contains the DSL-specific logic for mapping GUI components to the
library.

- layouts: Provides DSL-specific logic for defining layouts.

- neverlang-commons: Includes utilities for integrating the DSL with the Neverlang
framework, enabling modular language composition and extension.

5.2.3 guide-spl: SPL Module

The guide-spl module provides two main functionalities essential for managing the
Software Product Line (SPL) of the project:

- Feature-Based Composition: This functionality allows developers to generate
the guide-jar module by selecting a list of desired features. The program takes
these features as input and creates a version of the library and DSL with only the
necessary parts, enabling the creation of a tailored deployable product.

- Utility Programs for Extension: The module includes utility programs designed
to assist developers in extending the system. These tools automate the creation of
new components, layouts, or language adapters. Once run, the utilities generate

5.3 Library Implementation

the required files and folder structures in their appropriate locations, including
preliminary definitions without implementations. This simplifies the process of
adding new features while maintaining consistency across the project.

5.2.4 guide-jar: Generated SPL Module

The guide-jar folder contains the output of the SPL process, producing a module that is
immediately ready for the release process without requiring any manual modifications.
Once the release process is completed, the resulting product is fully prepared for use by
developers utilizing the DSL to create graphical user interfaces. This approach ensures
a streamlined workflow, allowing users to work with a customized and optimized
version of the library and DSL based on the selected features.

5.3 Library Implementation

The library module (guide-1ib) is the core component of the system, providing the
foundational building blocks for creating user interfaces. This section centers around
the implementation details of the library, focusing on the structure and functionality of
the core, components, layouts, and adapters.

5.3.1 Core
The Component Abstract Class

At the heart of the core module lies the Component class (Listing 5.1), which serves
as the foundational abstraction for all Ul elements. It is an abstract class designed to
encapsulate the essential properties and behaviors of a user interface component. A
special case of Component is Layout, another abstract class that extends it, specifically
used to distinguish structural elements from standard components.

Each Component instance is uniquely identified by an ID and maintains a set of
attributes, managed through a key-value map. Initially, this map is empty, but at-
tributes can be dynamically set during the rendering process. This mechanism allows
components to pass relevant contextual information to their children. For instance, in
Python’s Tkinter, each component requires a master element. When rendering a layout,
it assigns the master attribute to its child components, ensuring that they automatically
receive the correct parent reference when their render method is invoked.

The Component class also employs the Builder Pattern to streamline the configuration
of its attributes. This pattern enables developers to incrementally set properties of a
component.

The core functionality of Component is embodied in its abstract render method. This
method is responsible for producing the corresponding source code representation of
the component. When invoked, it returns a string containing the generated code, which
can either be written to a file or used by another component as part of a larger structure.
This mechanism is central to the composite pattern, allowing components to be nested

39

5 Implementation

and dynamically combined to form complex UI hierarchies while maintaining a clear
structure and attribute propagation.

public abstract class Component {
private static int id_number = 0;
private Value<String> id;
private final Map<Attributes, String> attributes = new HashMap<>();

public Component() {
id = Value.of(this.getClass().getSimpleName() + id_number++);
}
public abstract String render();
public String id() {
return id.get();

}

public Component withId(Value<String> id) {
this.id = id;
return this;

}

public void setAttribute(Attributes key, String value) {
attributes.put(key, value);
}

public Optional<String> getAttribute(Attributes key) {
return Optional.ofNullable(attributes.get(key));
}

Listing 5.1. Implementation of the Component abstract class .

Callback Handling

Another essential part of the core library is the Callback class (implemented as a record
in Listing 5.2), which represents an event-driven action within the Ul. A callback can be
assigned as a parameter to components that require user interaction, such as a button’s
click event or an input field’s change event.

public record Callback(String name) {}

Listing 5.2. Implementation of the Callback record, which represents a reference to a user-defined
function invoked by Ul components. In Java, a record is a special type of class designed to
concisely model immutable data carriers, automatically providing constructor, accessors, equals(),
hashCode(), and toString() methods .

Each Callback instance stores the name of the function that should be executed in
the target language when the event is triggered. This allows the generated Ul code
to properly reference and invoke user-defined functions within the specific execution
environment. The callback mechanism ensures that interactive elements are not only
visually represented but also functionally integrated into the application logic.

40

5.3 Library Implementation
Content Abstraction

The Content class (Listing 5.3) is another fundamental part of the core library, designed
to encapsulate different types of content that can be included within components.
Rather than limiting component content to a single data type, this abstraction allows
greater flexibility in UI composition.

A Content instance can represent:

— A hardcoded string, which directly defines static content.

- A Callback, enabling dynamic content retrieval through a function call in the
target language.

— Another Component, allowing the nesting of UI elements (e.g., embedding a button
inside a table cell).

This abstraction is particularly useful for complex components such as tables, where
each cell can contain static text, dynamic content generated at runtime, or even inter-
active elements. By leveraging the Content class, the library ensures a modular and
extensible approach to Ul representation.

public class Content<T> {
private ContentType type;
private Value<T> value = Value.of(() -> null);
public Content() {}
public Content(ContentType contentType, Value<T> value) { ... }

public static Content<?> contentString(String value) {
return new Content<>(ContentType.STRING, Value.of(value));

}

public static Content<?> contentCallback(Value<Callback> value) {
return new Content<>(ContentType.CALLBACK, value);

}

public static Content<?> contentComponent(Value<Component> value) {
return new Content<>(ContentType.COMPONENT, value);

}

public ContentType type() { return type; }

public T value() { return value.get(); }

public Content<T> withType(ContentType type) { ... }

public Content<T> withValue(Value<T> value) { ... }

public enum ContentType {
STRING, CALLBACK, COMPONENT

}

Listing 5.3. Implementation of the Content class, representing different types of values (strings,
callbacks, or components) that can be used within a Ul component .

41

5 Implementation

Lazy Evaluation with Value

The Value class (Listing 5.4) serves as a wrapper to enable lazy evaluation within the
library. This design follows the Hollywood Principle ("Don’t call us, we’ll call you”),
ensuring that computations and function calls within the component tree, built using
the Composite Pattern, are only executed during the rendering phase.

Instead of immediately resolving values when a component is instantiated, Value
delays evaluation until the render function is invoked. This mechanism improves effi-
ciency by preventing unnecessary computations and allows components to dynamically
adjust their output based on the attributes and state of their parent elements.

By incorporating Value, the library maintains a clean separation between component
definition and execution, optimizing performance while maintaining flexibility in UI
generation.

public class Value<T> {

private final Supplier<T> valueSupplier;

public Value(T value) {
this.valueSupplier = () =-> value;

}

public Value(Supplier<T> supplier) {
this.valueSupplier = supplier;

}

public T get() {
T value = valueSupplier.get();
if (value instanceof Value) {

return ((Value<T>) value).get();
} else {
return value;

}

}

public static <T> Value<T> of(T value) {
return new Value<>(value);

}

public static <T> Value<T> of(Supplier<T> supplier) {
return new Value<>(supplier);

}

Listing 5.4. Simplified implementation of the Value class, which wraps a value or a supplier to support
lazy evaluation. In Java, a Supplier<T> is a functional interface that provides a value on demand,
allowing deferred computation and reducing unnecessary evaluations .

5.3.2 Components and Layouts

The components and layouts directories define the concrete building blocks for con-
structing user interfaces. Although they include a Gradle build file to manage de-
pendencies collectively, they are not monolithic modules. Instead, each individual

42

5.3 Library Implementation

component and layout exists as a separate Gradle submodule. This modular structure
allows the Software Product Line (SPL) to selectively include only the necessary compo-
nents during the generation process, avoiding unnecessary dependencies and reducing
the final artifact size.

To facilitate the integration of components and layouts with different target languages,
each component and layout has a corresponding factory interface. These interfaces
define the methods required to instantiate concrete implementations of the components.

Each adapter implements these interfaces by providing language-specific factories
that return the appropriate component instances. This design allows the SPL process to
dynamically generate the necessary factories based on the selected features and target
language.

By using factory interfaces, the architecture maintains a clear separation between ab-
stract definitions and concrete implementations, ensuring that the core library remains
independent of any specific language while allowing for seamless extensibility.

Components

The set of implemented components includes:

— Root: The Root component serves as the entry point for the rendering process. It is
the only component that cannot be nested inside another and acts as the top-level
container for the generated Ul The output of its render function represents the
complete UI structure, which is then written to a file in the target language.

The Root component has several key parameters:

e callbacksFilename: Determines the name of the user-implemented callback
file to be imported, allowing the generated Ul to correctly reference external
function definitions.

e layout: Defines the layout structure used within the UL

e module: Specifies the name of the generated class in Python or module in
Elixir.

e title: Represents the Ul title, which is displayed as the page title for web
applications or as the window title for desktop applications.

e width and height: Define the dimensions of the window in desktop envi-
ronments.

Since the Root component encapsulates the entire Ul, it plays a central role in
integrating all other components, ensuring they are structured correctly according
to the selected target language.

Text: A simple text element.
Button: A clickable button that triggers callbacks.
Table: A tabular structure for displaying data in rows and columns.

Form: A container for grouping input elements.

InputText: A text input field for user input.

43

5 Implementation

Each component is implemented following the Composite Pattern, allowing hier-
archical structuring where applicable. Components rely on the render function to
generate the corresponding target language code. Additionally, certain components
utilize inherited attributes propagated from their parent to determine configuration
settings dynamically.

Layouts

Layouts define the positioning and structure of components within the UI. Unlike
standard components, layouts do not represent standalone visual elements but rather
describe how child components are arranged. Layouts are designed to be implemented
as separate Gradle submodules, enabling selective inclusion during SPL-based gener-
ation. This modular approach allows future extensions by adding new layout types
without affecting existing implementations.

Currently, the only implemented layout is the GridLayout, a layout system that
arranges components in a flexible grid structure. The GridLayout was chosen as the
initial implementation due to its versatility and widespread adoption in UI frameworks.
Grid-based layouts provide a balanced trade-off between flexibility and simplicity,
supporting various Ul configurations by defining rows and columns. This makes them
suitable for a wide range of applications, from simple forms to more complex dash-
boards. Additionally, the grid structure simplifies component alignment and resizing,
which are essential features when generating GUIs for multiple target languages with
differing layout management requirements.

5.4 Adapters Implementation

The adapters play a crucial role in the architecture, as they provide the concrete
implementations of components and layouts for different target languages. These
adapters are located within the guide-1ib module, inside the adapters directory. This
directory serves primarily as an organizational structure rather than a standalone
module, similar to how the components directory is structured.

5.4.1 Structure of the Adapters

Each supported target language has its own subdirectory within adapters, which
contains the necessary elements to generate the Ul in that specific language. The
structure of each language adapter is divided into three main sections:

— Core Module: The core directory contains language-specific utility classes that
assist in generating UI code. Some languages may not require additional utilities,
so their core module might be minimal or even empty.

— Components and Layouts: The components and layouts directories house the
concrete implementations of Ul elements for a given language. Each component

44

5.5 DSL Implementation

and layout extends its corresponding abstract definition from guide-1ib, ensuring
consistency while allowing for language-specific adaptations.

Each component or layout implementation follows a structured dependency model:
— It depends on the core module of its respective language for any required utilities.
— It depends on the util module of guide-1ib, which provides shared functionali-

ties across all adapters.

- It extends the corresponding abstract class from guide-1ib, ensuring that all
components adhere to a consistent interface.

5.4.2 Rendering and Code Generation

The primary responsibility of each adapter is to implement the render method for its
components and layouts. This method generates the appropriate source code in the
target language, ensuring that the final output aligns with the expected format.

To maintain readability and ease of maintenance, the implementation avoids em-
bedding large code snippets directly as Java strings. Instead, each adapter relies on
template files stored in the resources directory. These templates define the overall
structure of the generated code while using placeholders for dynamic content.

When a component is rendered, the system retrieves the relevant template file and
replaces placeholders with the actual values required to construct the final UI code.
This approach not only improves maintainability but also enhances scalability, as
modifications to the code structure can be made directly in the template files without
altering the Java implementation.

The functionality for loading and processing these template files is provided by
the util module in guide-1ib. This ensures a clean separation between logic and
presentation, making it easier to extend the system with additional target languages in
the future.

5.5 DSL Implementation

The Domain-Specific Language (DSL) module, named guide-ds1, is structured simi-
larly to guide-1ib, following a modular approach that ensures flexibility and main-
tainability. It is divided into several key directories: core, components, layouts, and
neverlang-commons. Each of these plays a distinct role in defining how the DSL func-
tions and interacts with the underlying library.

5.5.1 Core

The core module is fundamental to the DSL, as it provides the essential functionalities
required for any version of the product generated by the SPL. This module primarily
focuses on defining the syntax and semantics of the DSL through a series of Neverlang
modules. These modules establish the structural rules and behaviors that govern how
user-defined programs are interpreted and transformed into executable UI code.

45

5 Implementation

To achieve this, the core module depends on several key components:

- guide-dsl:neverlang-commons which provides utilities for error management,
expressions, and type handling.

— guide-1lib:core which includes the foundational abstractions shared across the
entire library.

— guide-lib:util offering utility classes and functions used throughout the system.

- guide-lib:components:root which defines the root component structure critical
for rendering and hierarchy management in the DSL.

In the guide-dsl core, the concepts of program, module, and variable form the
foundation of the DSL’s design and functionality.

Module mainModule {
// Variables
stringVariable = "Hello world"
intVariable = 42
boolVariable = true
colorVariable = #color("red")

/* Root definition =/
myFirstRoot = Root {
layout: layoutModule.myFirstLayout
}
}

Module layoutModule {
myFirstLayout = GridLayout {}
}

Listing 5.5. Example of a GUIDE DSL program defining modules and variables. The mainModule
declares multiple variables of different types (string, integer, boolean and color) and instantiates a
Root component using a layout defined in layoutModule .

A GUIDE Program is defined as a collection of modules. These modules can be
declared within the same file as shown in line 1 and lines 14 of Listing 5.5 or across
multiple .quide files, which are automatically loaded when the GUIDE Program is
executed. This behavior is analogous to the Java classpath, where all .class files
within a directory are loaded into the execution environment. This mechanism ensures
that all necessary modules and their dependencies are available for program execution.

Within each module, developers can define variables, as demonstrated in lines 3-6
of Listing 5.5. These variables serve as the core entities in the DSL and can represent
various types, including components, layouts, colors, strings, numbers, or booleans.
Modules are not isolated; the DSL supports cross-module referencing through dot
notation (e.g., layoutModule.myFirstLayout in line 10), allowing variables from one
module to be accessed and utilized within another. This capability is crucial for enabling
modular and reusable designs within the DSL.

To execute a GUIDE Program, the user must specify the name of a variable designated
as the Root of the program. In Listing 5.5, this is demonstrated in line 9, where the

46

5.5 DSL Implementation

myFirstRoot variable is defined as an instance of Root. This variable represents the
starting point of the UI structure. The DSL uses this Root to generate the corresponding
code, ensuring that the hierarchical relationships and dependencies among components
are respected and accurately reflected in the output.

To support the functionality and usability of the DSL, the core module also defines
foundational constructs such as comments, expressions, and identifiers.

The DSL allows developers to include comments within their . guide files to docu-
ment their code and improve readability, as seen in line 2 with a line comment and line 8
with a block comment. Comments are ignored during execution and do not impact the
generated output. This feature enhances the clarity of DSL programs, particularly in
complex designs involving multiple modules and variables.

In the DSL, everything is treated as an expression, including the values assigned
to variables (lines 3-6) and the parameters defined for components (e.g., layout:
layoutModule. layoutVariable in line 10). This design choice ensures that the DSL
remains highly flexible and consistent. By treating all constructs as expressions, the
DSL can seamlessly handle both simple values (e.g., strings, numbers, or booleans)
and more complex constructs, such as references to other variables or dynamically
evaluated parameters.

To support this level of expressiveness, the DSL adopts the Hollywood Principle
combined with lazy evaluation. This means that expressions are not immediately
resolved when defined; instead, they are evaluated only when needed during execution.
This approach ensures that components and parameters are resolved in the correct
order, even in scenarios involving circular dependencies or deferred computations.
It also allows users to define dynamic relationships between components without
requiring them to manually manage evaluation timing or dependencies.

The DSL employs identifiers to uniquely name variables and modules. Identifiers are
critical for ensuring that each variable or module can be distinctly referenced, whether
within the same module or across modules via dot notation (e.g., line 10).

5.5.2 Components and Layouts

The components and layouts directories structure the DSL into Gradle submodules,
each representing a specific GUI component or layout. This modular design aligns
with the Software Product Line (SPL) approach, allowing selective inclusion of features
based on project requirements.

Each submodule follows a consistent structure and depends on its corresponding
abstract counterpart in the library. Specifically, every component or layout module in
the DSL depends on its equivalent abstraction in guide-1ib, ensuring a clear separation
between the DSL syntax and the underlying implementation logic. Furthermore, all
component and layout modules inherit dependencies on both the core module of the
DSL and the core of the library, providing access to fundamental constructs necessary
for correct integration and execution.

Within each submodule, a Neverlang module defines the syntax and semantics of the
respective component or layout. These definitions specify how the element is parsed

47

5 Implementation

within the DSL and how it translates into the corresponding library representation. The
semantic implementation relies on the appropriate factory of the target output language,
which is correctly passed by Neverlang. Once the base component is generated by the
factory, the required fields specified in the DSL further customize it using the builder
pattern, ensuring flexibility in adapting components to user-defined configurations.

5.56.3 Neverlang Commons

The neverlang-commons module contains modified versions of several libraries from
the Neverlang framework to meet the requirements of guide. These libraries provide
essential functionality for error management, expression evaluation, and type handling
within the DSL.

The errors library is responsible for managing runtime errors that may occur during
the execution of the DSL. Unlike syntax errors, which are handled during parsing,
runtime errors are addressed through mechanisms provided by this library. These
include detailed error reporting and recovery strategies to ensure the robustness of the
DSL execution process.

The expressions library provides a comprehensive implementation of all expressions
available in Java. This includes a wide range of operators, from simple arithmetic
operations (e.g., addition, subtraction, multiplication) to more complex constructs
such as ternary operators, bitwise shifts, and unary operations. By leveraging this
library, the DSL gains support for a powerful and expressive syntax, allowing users to
define dynamic and complex logic within their programs. However, for guide only the
operations considered necessary such as those for booleans, numbers, and strings have
been enabled. This selective activation ensures that the DSL remains lightweight and
focused while still offering sufficient flexibility.

The types library provides an implementation of Java’s type system, enabling the
DSL to define and use types such as numbers, strings, and booleans. This module is a
dependency of the expressions library, as expressions often rely on type information
to perform operations and validations. By integrating types, the DSL ensures type
safety and consistency across all operations. Similar to the expressions library, only
the specific types required for guide have been enabled to reduce complexity and
maintain focus on the intended use cases.

One of the key advantages of Neverlang is its inherent modularity. This allowed the
selective customization of these libraries to suit the specific requirements of guide. By
activating only the necessary types and operations, the neverlang-commons module
provides a lightweight yet powerful foundation for the DSL, ensuring that it remains
efficient and well-aligned with its design goals.

5.6 SPL Implementation

The Software Product Line (SPL) approach plays a central role in enabling the modular-
ity and configurability of the system. By structuring the project into distinct, reusable

48

5.6 SPL Implementation

modules, the SPL allows for the generation of customized variants of DSL, ensuring
that only the necessary features are included in a given configuration. This mini-
mizes redundancy, optimizes performance, and simplifies maintenance by reducing
unnecessary dependencies.

The SPL is responsible for managing feature selection and composition, ensuring
that the final system instance includes only the components and layouts required for a
particular use case. This is achieved through a combination of feature-based composi-
tion mechanisms and automated build configurations that dynamically assemble the
selected modules into a cohesive system.

Additionally, the SPL framework includes utility programs designed to facilitate
its extension. These utilities assist in defining new features, managing dependencies,
and ensuring consistency between the DSL and the library. Through this structured
approach, the SPL enhances the adaptability and maintainability of the architecture,
making it easier to introduce new GUI elements, target different platforms, or refine
existing functionality without requiring extensive modifications to the core system.

5.6.1 Feature-Based Composition

The SPL framework follows a feature-based composition approach to dynamically
generate a customized version of the system based on user-defined requirements. At
the core of this process is the program responsible for creating the Gradle-based project
guide-jar. This program allows users to specify the features they want to include,
ensuring that the generated system contains only the necessary components without
unnecessary overhead.

Features in the SPL are divided into three main categories:

— Output Languages: These define the programming languages into which the GUI
code will be generated.

— Components: These represent the various Ul elements available in the generated
system.

— Layouts: These define the structural arrangements of components within the user
interface.

To ensure that the generated project functions correctly, at least one feature from
each category must be selected. Additionally, the root feature is always required, as it
serves as the entry point for GUI generation.

Once the user has selected the desired features, the system proceeds with the
generation of the guide-jar project. This involves several steps:

1. The existing guide- jar directory is deleted and recreated to ensure that the build
starts from a clean state.

2. A new Gradle build file is generated, including dependencies only for the selected
features, keeping the project minimal and efficient.

3. A factory is created for each requested output language, ensuring that the DSL-
generated Ul definitions are correctly translated into the target language.

49

5 Implementation

4. A CLI-based main program is generated, allowing users to interact with the
system through the command line.

The CLI tool serves as the interface for compiling and executing GUI definitions
written in the DSL. When running the tool, users must provide:

— The directory containing the .guide files.

— The name of the root module, formatted as moduleName. root.
— The target output language for code generation.

— The name of the output file to be generated.

To facilitate deployment and distribution, the Gradle build also includes a depen-
dency on shadowJar, which allows the entire project to be packaged as a single exe-
cutable JAR file. This means that the resulting system can be easily shared and used as
a standalone CLI tool, functioning as a dedicated compiler for the GUIDE DSL. Thanks
to this modular approach, developers can generate a custom versions of the system
that match their specific needs while maintaining flexibility for future adaptations.

5.6.2 Utility Programs for Extension

To facilitate the extensibility of the framework, the SPL provides two utility programs
designed to streamline the process of adding new components, layouts, or output
languages. These programs automate the creation of the necessary project structure,
ensuring consistency and reducing the effort required for manual setup.

Component and Layout Template Generator

The first utility program is responsible for generating the template for a new component
or layout. It requires two inputs from the user:

— The name of the new component or layout.

— A specification of whether the entity being created is a component or a layout.

Based on these inputs, the program automatically generates the required module
structure within the framework. Specifically, it creates:

— A new Gradle submodule under guide-1ib/components or guide-1lib/layouts,
depending on the type of entity being added. This module serves as the abstract
definition of the new component or layout.

- A corresponding submodule for the concrete implementation of the new compo-
nent/layout for each supported output language.

- A Neverlang module within guide-dsl that defines the DSL rules required to
integrate the new component/layout into the GUIDE language.

All generated modules include pre-filled template files to provide a structured
starting point for implementation. Although these files contain only partial definitions
and require further development, they ensure that the necessary files and dependencies
are in place, reducing setup time and minimizing errors.

50

5.7 Example Usage of the DSL

Output Language Template Generator

The second utility program is designed to facilitate the addition of a new output
language to the framework. When executed, it creates the necessary directory structure
within the adapter folder inside the library. The generated structure includes:

- A core directory containing the foundational components required to support
the new language.

— A components directory with submodules for all existing UI components, ensuring
they can be implemented in the new language.

- A layouts directory containing the necessary modules for layouts, following the
same modular structure as components.

Similar to the component/layout generator, this utility program does not create empty
directories but instead provides template files as a foundation for implementation.
These files help standardize the integration of new languages while leaving room for
customization. However, since they contain only placeholders, the generated modules
will not compile until the implementation is completed.

By providing these utility programs, the framework ensures that extending GUIDE
with new features is a straightforward and consistent process. Developers can quickly
set up the required project structure and focus on implementing the actual components,
layouts, or language adapters, streamlining the overall development workflow.

5.7 Example Usage of the DSL

This example expands upon the structure illustrated in Figure 4.2, translating it into
a concrete implementation using the GUIDE DSL. The corresponding GUIDE DSL
code is shown in Listing 5.6, which defines the UI components and their hierarchical
relationships in a structured manner. Furthermore, Figures 5.4, 5.2, and 5.3 showcase
the generated interfaces in three different output languages: Python, HTML, and Elixir,
demonstrating the portability of the approach.

5.7.1 Description of the Example

The salary management system consists of the following UI elements:

— A title that serves as the heading of the application.

- A table displaying the existing salary records.

— A form for adding new salary entries, containing three input fields for:
e First name
e Last name
e Salary amount

- A text message accompanied by a button that allows users to delete all salary
records.

51

5 Implementation

Module salaries {
title = "Salaries"
deletePrimaryColor = #color("red")
deleteSecondaryColor = #color("#000000")
gridlLayout = GridLayout {
Text {
textColor: #color("blue"),
backgroundColor: #color("#FFFF00"),
content: title

};
Table {
id: table,
headers: ["Name", "Surname", "Salary"l,
rows: [
"John", "Doe", "1000";
"Jane", "Doe", "2000";
1
};
Form {

id: addForm,
submitButtonText: "Add salary",
onSubmit: @addFormOnSubmit,
fields: [
"Name": InputText {
id: name,
placeholder: "Name"
}l
"Surname" : InputText {
id: surname,
placeholder: "Surname"
}
"Salary" : InputText {
id: salary,
placeholder: "Salary"
}
1
};
Text {
textColor: deletePrimaryColor,
backgroundColor: deleteSecondaryColor,
content: "Delete all salaries: "
}
Button {
id: deleteButton,
textColor: deletePrimaryColor,
backgroundColor: deleteSecondaryColor,
content: "Delete",
onClick: @deleteButtonOnClick
};
}
root = Root {
module: "salaries",
title: title,
height: 600,
width: 800,
callbacksFilename: "salaries_callbacks",
layout: gridLayout

Listing 5.6. Example of a salary management system described using the GUIDE DSL. The system
includes a title, a table displaying salary records, a form for adding new entries, and a text message
52 With a button to delete all records .

5.7 Example Usage of the DSL

5.7.2 Implementation and Evaluation

The chosen example is a salary management system and was deliberately selected
due to its balance between complexity and representativeness. It exercises all the core
tfeatures of GUIDE’s DSL, including hierarchical component composition, attribute
management, and dynamic rendering across multiple output languages. Specifically,
it incorporates diverse Ul elements such as tables, forms, input fields, and buttons,
arranged using a grid layout. This variety ensures that the example touches upon a wide
range of functionalities, providing a meaningful benchmark for GUIDE’s capabilities.

The example was considered sufficient for evaluation because it achieves broad
coverage of key GUIDE functionalities. It requires:

— Component nesting and hierarchy management, testing the composite pattern
implementation.

— Dynamic attribute propagation, verifying the correctness of contextual attribute
handling.

- Cross-language code generation, ensuring that GUIDE can target multiple plat-
forms seamlessly.

— Callback integration, validating event-driven interactions across supported lan-
guages.

Moreover, the salary management system poses specific challenges, such as maintain-
ing state consistency across user interactions (e.g., adding and removing salary entries)
and rendering dynamic content in the Ul Successfully implementing these aspects
demonstrates that GUIDE can manage non-trivial application logic and UI updates.

The generated application functioned as expected across all supported output lan-
guages demonstrating GUIDE’s flexibility and portability. The only manual effort
required was the implementation of callback functions handling user interactions, such
as adding or removing salaries.

This validation process confirmed that GUIDE’s DSL provides a practical and expres-
sive way to define UI structures while maintaining modularity and reusability across
different platforms. The example’s ability to cover multiple core functionalities, com-
bined with its moderate complexity, makes it a convincing proof of GUIDE's robustness
and applicability to more complex scenarios.

An additional observation from the evaluation process is the visual consistency across
different output languages. As shown in Figures 5.2 and 5.3, the final UI maintains a
nearly identical appearance despite being implemented using two distinct program-
ming languages and styling frameworks: Bootstrap for HTML and Tailwind CSS for
Elixir. This demonstrates the effectiveness of GUIDE in abstracting UI structure from
language-specific details, ensuring that interfaces remain coherent regardless of the
target environment. Such consistency is particularly valuable in multi-platform appli-
cations, where maintaining a uniform user experience across different technologies is
essential. However, the Python (Tkinter) version, shown in Figure 5.4, exhibits notice-
able differences in appearance due to the nature of desktop UI frameworks. Despite
these differences, the core structure of the Ul remains consistent across implementations.

53

5 Implementation

Salaries

Name

John

Jane

Surname

Doe

Doe

Salary
1000

2000

Name

Name

Surname

Surname

Salary

Salary

Add salary

Figure 5.2. Generated salary management system in HTML. The Ul includes a title, a table displaying
salary records, a form for adding new entries, and a text message with a button to delete all records.

Salaries
Name Surname Salary
John Doe 1000

Jane Doe 2000
Name

Name

Surname

Surname

Salary
Salary

Add salary

Figure 5.3. Generated salary management system in Elixir (Phoenix LiveView). The Ul includes a title,
a table displaying salary records, a form for adding new entries, and a text message with a button to
delete all records.

54

5.7 Example Usage of the DSL

John
Jane

Name

Salaries

Surname

Name
Surname

Salary

Add salary

Salary
1000
2000

Figure 5.4. Generated salary management system in Python (Tkinter). The Ul includes a title, a table
displaying salary records, a form for adding new entries, and a text message with a button to delete

all records.

55

Experiments

The purpose of this evaluation is to quantify the benefits of GUIDE in terms of modular-
ity, reusability, and reduction of manual coding effort. By leveraging a Domain-Specific
Language (DSL) and Software Product Line (SPL) techniques, GUIDE aims to stream-
line the development of graphical user interfaces while maintaining flexibility in feature
selection.

The degree to which this goal was reached is determined on the following aspects:

First, it examines the number of possible configurations that can be generated through
SPL, highlighting the modularity of the system.

Then, the evaluation measures the reduction in development effort by comparing the
size of DSL specifications to the generated GUI code. By analyzing the expansion factor
in terms of lines of code and characters, this study quantifies the impact of GUIDE in
minimizing repetitive coding tasks and accelerating development.

Additionally, it evaluates the effort required to extend GUIDE by adding new com-
ponents or target languages, comparing manual implementation with the automated
approach provided by SPL.

Finally, the study assesses the effect of feature selection on storage and distribution
efficiency, demonstrating that compression and dependency management play a more
significant role than selective feature activation in reducing the software footprint.

These analyses provide insight into GUIDE’s strengths and limitations, offering a
comprehensive view of its advantages over traditional, manually written GUI code.

6.1 Modularity and Scalability

A key advantage of GUIDE’s architecture is its modularity, which allows users to
generate customized versions of the system by selectively enabling only the necessary
features. The modular structure is based on three main feature categories:

— Output Languages: 3 available options (Python, HTML, Elixir).
— Components: 6 available components, including a mandatory root.
- Layouts: 1 available layout.
Unlike traditional monolithic approaches, GUIDE allows multiple languages and
multiple layouts to be enabled simultaneously within the same configuration. This

significantly increases the number of possible system variations. The total number of
valid configurations can be computed using the following formula:

57

6 Experiments

Total Configurations = (27 Languages _ 1) x (g% Layouts _ 1) » (2(# Components—1) __ 1)

Each term in the formula represents a different aspect of configurability:

— (2fLanguages _ 1): Since multiple languages can be selected, each of the three
available output languages can either be included or excluded. This results in
23 = 8 total combinations, but we subtract 1 to remove the invalid case where no
language is selected, leaving us with 7 valid choices.

— (2#Layouts _1): Since multiple layouts can also be included, this term accounts for
the possible selections of available layouts. In GUIDE, there is currently only one
layout, meaning this term evaluates to 2! — 1 = 1, ensuring at least one layout is
always selected.

— (2#Components—1) _ 1) GUIDE has six components, but the root component is
mandatory. This leaves five optional components, each of which can either be
included or excluded. This results in 2° = 32 combinations, but we subtract 1 to
exclude the case where no additional components are selected, yielding 31 valid
combinations.

Substituting the actual values for GUIDE:

Total Configurations = (22 —1) x (2! —1) x (2° —1) =7 x 1 x 31 =217

This means that GUIDE can generate up to 217 distinct system variants, each tailored
to specific requirements. While some of these configurations might not be particularly
useful in real-world scenarios, especially when only a limited number of components
are included, they demonstrate the applicability of this architecture to more complex
cases. In such contexts, where extensive component libraries and multiple target
languages may introduce unnecessary complexity and increase distribution size, the
SPL approach proves valuable by enabling the generation of streamlined, purpose-
specific system variants. The exponential relationship between the number of selectable
features and the total configurations further highlights the scalability of this approach,
as adding even a few new components or layouts would significantly expand the range
of potential system variations.

6.1.1 Commit Analysis for Modular Development

To evaluate the modularity of GUIDE, a commit analysis was conducted to measure
the extent of modifications required when introducing new features. The goal was to
determine whether GUIDE successfully isolates changes within dedicated modules,
ensuring minimal impact on unrelated parts of the system. Two experiments were
performed: the first involved adding a new layout, while the second focused on
integrating a new output language. The results provide insight into the scalability and
maintainability of the system.

58

6.1 Modularity and Scalability

Adding a New Component or Layout

The first experiment involved the automatic generation of an absolute-layout module
using GUIDE’s SPL utility. After running the process, the results of the git diff
--stat command showed a total of 13 changed files, with 69 lines of code added and
only one existing file modified as shown in Listing 6.1.

The breakdown of the modifications is as follows:

- 12 newly added files:
— The Neverlang syntax module for DSL integration.
— Concrete implementations for all three output languages
(Python, HTML, and Elixir).
— The abstract definition of absolute-layout within the library.
— The corresponding test module for unit testing.
— Build scripts and factory classes required for integration.

- 1 modified file: The only existing file altered was Layout. java in the SPL module,
which maintains the list of available layouts. This modification ensures that the
newly introduced layout is automatically recognized by future configurations
generated by GUIDE.

guide-dsl/layouts/absolute-layout/build.gradle
guide-dsl/layouts/absolute-layout/src/.../AbsolutelLayoutSlice.nl
guide-lib/adapters/elixir/layouts/absolute-layout/build.gradle
guide-lib/adapters/elixir/layouts/absolute-layout/src/.../ElixirAbsolutelLayout.java
guide-lib/adapters/html/layouts/absolute-layout/build.gradle
guide-lib/adapters/html/layouts/absolute-layout/src/.../HtmlAbsolutelLayout. java
guide-lib/adapters/python/layouts/absolute-layout/build.gradle

guide-lib/adapters/python/layouts/absolute-layout/src/.../PythonAbsolutelLayout.java
guide-lib/layouts/absolute-layout/build.gradle
guide-1lib/layouts/absolute-layout/src/main/.../AbsolutelLayout.java
guide-lib/layouts/absolute-layout/src/main/.../AbsolutelLayoutFactory.java
guide-lib/layouts/absolute-layout/src/test/.../AbsolutelLayoutTest.java
guide-spl/src/main/java/it/unimi/di/adaptlab/guide/spl/Layout.java

13 files changed, 69 insertions(+)

Listing 6.1. git diff --stat output for adding a new layout to GUIDE .

The experiment demonstrated that GUIDE successfully isolates feature additions. All
necessary structural elements were created in dedicated locations without requiring
manual changes to unrelated parts of the system. Some additional supporting direc-
tories, such as pre-organized resource folders, were not tracked by Git because they
contained no files at this stage.

It is important to note that if the same experiment had been conducted with the
addition of a new component instead of a layout, the results would have been identical.
The modular structure of GUIDE ensures that new components follow the same
automatic generation process, creating dedicated modules without impacting existing

59

6 Experiments

ones.

While the only modification to an existing file was within the SPL module, this
small level of coupling could be further minimized by making the discovery of layouts,
components, and languages fully dynamic. This enhancement would eliminate the
need to update the registry manually, further improving system modularity.

Adding a New Output Language

The second experiment involved adding support for a new output language, Java.
This process was also performed using the SPL utility, and the results of the git diff
- -stat command showed a total of 19 changed files, with 109 lines of code added and
one existing file modified as shown in Listing 6.2.

The modifications were distributed as follows:

- 18 newly added files:
- A new java directory under the adapters folder in GUIDE’s library.

- Concrete implementations of all existing components
(button, form, input-text, root, table, text).

- A core module containing essential logic for Java-based Ul generation.
— A concrete implementation of grid-layout for Java.
— Corresponding build scripts to manage dependencies for each module.

- 1 modified file: The existing file Language. java in the SPL module was updated to
register Java as a supported language. This ensures that any future configurations
including Java will automatically generate the necessary module structure.

Similar to the layout addition, the system maintained a high degree of modularity,
with all changes confined to new files within the designated adapter structure. The
only modification to an existing file was the update to the SPL language registry, which
could also be eliminated by implementing a dynamic discovery mechanism.

Additionally, as observed in the previous experiment, some directories that would
normally contain pre-organized resources for the new language were not included in
the git diff --stat output due to Git’s behavior of not tracking empty folders. These
directories are part of the generated structure and would normally be populated during
the implementation phase, further streamlining the development process.

Conclusion

Both experiments confirm that GUIDE adheres to strong modular development prin-
ciples, as the addition of new components, layouts, and languages remains isolated
within dedicated modules. The minimal impact on pre-existing files demonstrates the
effectiveness of the SPL approach in managing system variability.

Future improvements could focus on further reducing manual interventions in the
SPL registry files by implementing a dynamic feature discovery mechanism, allowing

60

6.2 Code Reduction and Development Effort

guide-lib/adapters/java/build.gradle
guide-lib/adapters/java/components/build.gradle
guide-lib/adapters/java/components/button/build.gradle
guide-lib/adapters/java/components/button/src/.../JavaButton.java
guide-lib/adapters/java/components/form/build.gradle
guide-lib/adapters/java/components/form/src/.../JavaForm.java
guide-lib/adapters/java/components/input-text/build.gradle
guide-lib/adapters/java/components/input-text/src/.../JavalnputText.java
guide-lib/adapters/java/components/root/build.gradle
guide-lib/adapters/java/components/root/src/.../JavaRoot.java
guide-lib/adapters/java/components/table/build.gradle
guide-lib/adapters/java/components/table/src/.../JavaTable. java
guide-lib/adapters/java/components/text/build.gradle
guide-lib/adapters/java/components/text/src/.../JavaText.java
guide-lib/adapters/java/core/build.gradle
guide-lib/adapters/java/layouts/build.gradle
guide-lib/adapters/java/layouts/grid-layout/build.gradle
guide-lib/adapters/java/layouts/grid-layout/src/.../JavaGridLayout.java
guide-spl/src/main/java/it/unimi/di/adaptlab/guide/spl/Language. java

19 files changed, 109 insertions(+)

Listing 6.2. git diff --stat output for adding a new language to GUIDE .

new elements to be automatically detected and integrated without requiring explicit
registration.

6.2 Code Reduction and Development Effort

One of the key advantages of using GUIDE is the significant reduction in the amount
of code that developers need to manually write. To quantify this benefit, an experiment
was conducted by implementing the salary management system example presented in
the implementation chapter (Listing 5.6) using GUIDE’s DSL and generating equivalent
code in three target languages: Python (Tkinter), HTML (Bootstrap), and Elixir (Phoenix
LiveView).

The Expansion Factor is a key metric for evaluating the effectiveness of GUIDE in
reducing the manual effort required to develop a user interface. The formula used to
calculate the Expansion Factor for both Lines of Code (LOC) and Code Size (CS) is
presented below, where CS refers to the total number of characters in the code.

‘ _ LOC Generated
Expansion Factor (LOC) = LOCDSL
. CS Generated
Expansion Factor (CS) = T CSDSL

This formula shows the increase (or decrease) in the number of lines or characters
generated compared to the original DSL. A positive result indicates an expansion, while
a negative result would imply a reduction.

61

6 Experiments

The following table (Table 6.1) summarizes the number of lines of code (LOC) and
characters (CS) required in each case, along with the calculated Expansion Factors:

Language toc | Loc | PEEET | cs | cs | PR
' (LOO)) (CS)
Python (Tkinter) 63 55 -12.69% 1353 | 2517 | +86.03%
HTML (Bootstrap) | 63 62 -1.59% 1353 | 2067 | +52.77%
Elixir (Phoenix) 63 81 +28.57% | 1353 | 3232 | +138.87%

Table 6.1. Comparison between GUIDE DSL and generated code in different languages.

From the results, it is evident that the generated code is significantly larger in terms
of characters, even in cases where the LOC count remains similar or decreases slightly
(e.g., Python and HTML). This is due to differences in syntax verbosity across languages
and the necessity of additional boilerplate code in the generated output.

It is important to note that the DSL code in this experiment was deliberately written
with additional variable allocations, even when those variables were used only once.
This was done to demonstrate GUIDE's capability of handling variable definitions and
to showcase a broader range of DSL features. In a real-world scenario, the DSL code
could be written in fewer lines and with fewer characters while achieving the same
result, making GUIDE even more efficient in reducing manual coding effort.

6.2.1 Estimated Time Savings

To quantify the practical benefits of GUIDE in terms of developer effort, we estimate
the time required to manually write the generated code compared to using the DSL.
Based on industry research, developers typically write code at an average rate of 20-30
LOC per hour for structured and production-ready code [9, 24].

For this analysis, we approximate that writing the DSL version of the Salary Manage-
ment System took around one hour, based on manual observations. This is a rough
estimate and may vary depending on the developer’s familiarity with the DSL and the
complexity of the Ul being defined.

The estimated time savings can be calculated using the following formula:

Time required for DSL

Estimated Saving = 1 —
stmated savinig Time required for manual coding

where:
- Time required for DSL is 60 minutes.

— Time required for manual coding is based on the previously computed time
estimates for each target language.

The results are summarized in Table 6.2.

62

6.3 Effort Analysis for Feature Extension

Language G LOC Time . Time. Estimatid
enerated | Manual (min) | DSL (min) | Saving (%)
Python (Tkinter) 55 110 60 1— % = 45%
HTML (Bootstrap) 62 124 60 1— £ =51%
Elixir (Phoenix) 81 162 60 1— £ =63%

Table 6.2. Estimated time savings using GUIDE compared to manual coding.

From these results, GUIDE reduces development time by an estimated 45-63%,
depending on the target language. The greatest savings are observed in Elixir, likely
due to the verbosity of Phoenix LiveView, whereas Python, having a more compact
syntax, shows a lower percentage gain.

Although the one-hour estimate for writing the DSL is approximate, it is important to
note that even with variations in this time, GUIDE still provides a significant reduction
in manual coding effort. Additionally, for more complex interfaces, the time saved is
expected to be even greater, as the advantages of automation scale with UI complexity.

6.2.2 Conclusion

The results demonstrate that GUIDE effectively reduces the amount of code that
developers need to manually write, both in terms of lines and characters. By abstracting
low-level details and automating the generation process, GUIDE not only decreases
coding effort but also minimizes the likelihood of errors and inconsistencies in Ul
implementation. The estimated time savings further highlight the practical benefits of
using GUIDE, making it a valuable tool for accelerating GUI development.

6.3 Effort Analysis for Feature Extension

An essential aspect of evaluating GUIDE’s impact is understanding how much effort it
reduces when adding new features. This section analyzes the effort required to extend
GUIDE with a new component or a new output language, comparing the amount of
manual coding needed with and without GUIDE. The goal is to quantify the reduction
in development effort, both in terms of lines of code (LOC) and estimated time savings.

6.3.1 Adding a New Output Language

To estimate the effort required to add a new output language manually, we examined
the existing adapters for Python, HTML, and Elixir. The total LOC across all three
adapters is 1375, leading to an average LOC per language of:

1375
LOCadapter - T ~ 458.33

6 Experiments

When adding a new language using GUIDE'’s SPL utility, 108 LOC are generated
automatically, as confirmed by the commit analysis in Listing 6.2. This means the actual
manual effort required is:

LOCmanual = LOCadapter - LOCgenerated = 458 — 108 = 350

Using the same time estimation model discussed in the previous chapter (based
on [9, 24]), and assuming a developer writes between 20 and 30 LOC per hour, we
estimate the manual time required:

LOCranuat 350 350

Ti = — o = ——to_—— =116t0175h
iMemanual LOC/hour 20 to 30 6 to 17.5 hours

The estimated effort reduction is:

LOChanual —1— @ ~ 23.6%

Effort Reduction =1 - ————=
LOC.dapter 458

6.3.2 Adding a New Component or Layout

A similar analysis was conducted to estimate the effort required to add a new GUI
component. Across the seven existing components and layouts (root, button, form,
input-text, table, text, and grid-layout), the total LOC (excluding adapters) is 2784,
leading to an average LOC per component of:

2784
LOCoomponent = 78 ~ 397.71

The adapter portion of each component is estimated by taking the average size of
an adapter (458 LOC) and dividing it by the number of components and layouts, then
multiplying by three to account for the three output languages (Python, HTML, and
Elixir):

458

LOCadapter per component — <7> X 3 =6543 x 3~ 196.3

Thus, the total manual effort required to add a new component manually (including
its adapters for all languages) is:

LOChanual = LOCcomponent + LOCadapter per component — 398 + 196 = 594
Using GUIDE, 68 LOC are generated automatically (Listing 6.1), reducing the manual
effort to:

LOC ranual = 594 — 68 = 526

Using the same time estimation model as before, the manual implementation time is:

526 526
Timemanual = % to % = 175 to 26.3 hours

6.4 Impact of Feature Selection on Storage and Distribution Efficiency

The estimated effort reduction is:

LOChanual . % ~ 11.4%

Effort Reduction =1 —
LOCcomponent + LOCadapter per component 594

6.3.3 Conclusion

The results indicate that GUIDE significantly reduces the manual effort required for
adding both new output languages and new GUI components or layouts. While the
effort reduction for new components (11.4%) is lower than for new languages (23.6%),
this is expected since component additions require more customization. However, in
both cases, the SPL utility reduces boilerplate work, allowing developers to focus on
feature-specific logic rather than repetitive setup tasks.

6.4 Impact of Feature Selection on Storage and Distribution
Efficiency

Optimizing the size of distributed software packages is an important aspect of improv-
ing efficiency, reducing download times, and minimizing resource consumption. This
is particularly relevant in the context of green computing, where reducing storage and
bandwidth usage translates to lower energy consumption across cloud infrastructures
and end-user devices.

This section analyzes the impact of GUIDE’s feature selection on the final JAR size,
evaluating how much space could be saved by distributing an optimized version with
only the required features.

6.4.1 JAR Size Analysis

The GUIDE JAR file is inherently compressed, reducing its size by approximately 38%.
However, to analyze the actual weight of each component, measurements were con-
ducted on the uncompressed JAR, which occupies a total of 56.87 MB (56 865 520 bytes).

The majority of this space is occupied by Neverlang (76.5%) and other dependencies
(22.5%), while GUIDE’s own components collectively account for just 1% of the total
size. The overall distribution of the JAR is illustrated in Figure 6.1.

To better understand the breakdown of GUIDE’s portion, Figure 6.2 provides a
zoomed-in view, showing that the DSL module contributes 0.7%, followed by Adapters
(0.2%) and the Library (0.1%).

6 Experiments

| Neverlang
O Other Dependencies
E GUIDE

E GUIDE DSL
O Adapters
O GUIDE Library

Figure 6.1. Overall size distribution of the GUIDE Figure 6.2. Breakdown of GUIDE-specific compo-
uncompressed JAR. nents.

6.4.2 Effect of Feature Removal

The results indicate that the majority of the JAR size is occupied by Neverlang (76.5%)
and other dependencies (22.5%). The actual GUIDE components, including the DSL,
library, and adapters, collectively account for only 1% of the total package size.

Since the GUIDE code contributes a minimal amount to the total JAR size, removing
features does not significantly impact the overall storage footprint. Even if a version
of GUIDE were generated with only a single output language, a minimal set of
components, and one layout, the total size reduction would be negligible.

However, while the storage impact of feature removal is limited, this selective
approach remains highly relevant in enterprise scenarios. Companies might not want
to distribute parts of the software that have not been purchased or are unnecessary
for specific clients. Selective feature distribution can therefore reduce the complexity
of the delivered product and limit exposure to intellectual property concerns by only
including relevant components.

Furthermore, the possibility of distributing Neverlang and other dependencies sepa-
rately could mitigate the minimal effect of feature removal. In contexts where multiple
GUIDE variants are needed, a single shared copy of Neverlang could be reused across
all configurations. This would significantly reduce storage requirements and bandwidth
usage, as only the JAR files corresponding to the specific features would need to be
distributed for each variant.

Compression also plays a significant role in optimization. Since the JAR is already
internally compressed by 38%, further reductions can be achieved through advanced
distribution-level compression techniques. Nonetheless, separating core dependen-
cies from feature-specific components represents an additional, practical strategy for
optimizing storage and distribution efficiency.

6.4.3 Modularizing Dependencies for Efficient Distribution

While selective feature removal has a limited impact on overall storage due to the
dominance of core dependencies, further distribution efficiency can be achieved by
modularizing these dependencies. In particular, Neverlang accounts for 76.5% of the
uncompressed JAR size, making it a prime candidate for separate distribution.

By distributing Neverlang and other major dependencies independently, multiple
GUIDE variants could share a single instance of these components. This approach

66

6.4 Impact of Feature Selection on Storage and Distribution Efficiency

is especially beneficial in enterprise environments where different clients require
customized versions of GUIDE. Instead of distributing multiple complete JARs, each
containing redundant copies of Neverlang, the core can be shared while only the
specific JAR files corresponding to the desired features are distributed per variant.

Such modularization not only reduces storage requirements but also simplifies
maintenance. Updates to core dependencies would not require redistributing all
variants, as the shared modules could be updated separately. Moreover, this approach
aligns with best practices in software distribution, where decoupling core frameworks
from application-specific logic leads to more efficient deployment pipelines and lower
operational costs.

In conclusion, modularizing core dependencies like Neverlang presents a scalable
and efficient strategy for distribution, particularly when managing multiple GUIDE
configurations across diverse environments.

6.4.4 Advanced Compression Strategies for Distribution Efficiency

While GUIDE’s feature selection mechanism enables modularity, its impact on storage
reduction is limited. The majority of the JAR size is occupied by dependencies such
as Neverlang, making feature removal an ineffective strategy for reducing distribution
size. The most effective way to optimize storage and bandwidth usage is through
distribution-level compression techniques, rather than feature selection.

One possible approach is adopting advanced compression algorithms like Zstandard
(zstd) [15] or Brotli [2], which provide better compression ratios and faster decom-
pression speeds than traditional ZIP. These algorithms have been widely adopted for
reducing software distribution overhead while maintaining high performance.

Another strategy is delta compression, which minimizes update sizes by transmitting
only the differences between two versions of a software package. This method has
been successfully applied in various contexts, such as Google’s Courgette system'?,
which achieves significant bandwidth savings for software updates. In environments
where software updates are frequent, this approach reduces redundant data transfers,
lowering network load and power consumption.

Reducing unnecessary dependencies is another optimization route. Dependency
pruning and tree-shaking techniques, used extensively in JavaScript frameworks like
Webpack3, analyze the dependency graph to eliminate unused modules, thereby reduc-
ing the final package size. This concept could be applied to GUIDE by dynamically
selecting only the required portions of Neverlang. Since GUIDE’s largest storage over-
head comes from its dependencies, a more selective inclusion of runtime components
could enhance efficiency while reducing storage requirements on distributed systems.

Finally, executable compression techniques like UPX* (Ultimate Packer for Exe-
cutables) offer an additional reduction in binary size while preserving functionality.

Thttps://blog.chromium.org/2009/07/smaller-is- faster-and-safer-too.html
2https://www.chromium.org/developers/design-documents/software-updates-courgette/
3https://webpack.js.org/

4https://upx.github.io/

https://blog.chromium.org/2009/07/smaller-is-faster-and-safer-too.html
https://www.chromium.org/developers/design-documents/ software-updates-courgette/
https://webpack.js.org/
https://upx.github.io/

6 Experiments

Although these methods introduce slight CPU overhead during decompression, they
can significantly reduce storage requirements, which is beneficial in cloud-based de-
ployments where energy efficiency is a priority.

Since data transmission is a major factor in energy consumption for cloud services
and distributed systems [4], reducing package size directly contributes to lower energy
usage and improved sustainability. Large software packages require greater bandwidth,
increase the load on network infrastructure, and lead to higher power consumption in
data centers due to prolonged data transfer and storage demands. By minimizing the
amount of data that needs to be distributed, optimized compression and dependency
management not only enhance software efficiency but also reduce the carbon footprint
associated with large-scale deployments.

Future optimizations in GUIDE could involve adopting a hybrid approach, combining
dependency reduction with more efficient compression methods. By improving storage
and bandwidth efficiency, these optimizations not only reduce distribution overhead
but also contribute to sustainable software practices, making GUIDE more suitable for
resource-constrained environments.

6.4.5 Conclusion

The evaluation of GUIDE's storage and distribution efficiency has revealed that feature
selection has a limited impact on the overall package size, as the majority of the JAR
is occupied by external dependencies, particularly Neverlang. Even with a minimal
set of features, the total storage footprint remains largely unchanged, making feature
removal alone an ineffective optimization strategy.

A more practical approach to improving distribution efficiency lies in modularizing
dependencies. By distributing core dependencies like Neverlang separately, multiple
GUIDE variants can share a single instance of these components. This approach is
especially beneficial in enterprise contexts, where clients may require tailored versions
of the software. Selective distribution ensures that only the relevant components are
delivered, reducing redundancy and addressing intellectual property concerns.

Additionally, distribution-level compression techniques, such as advanced compres-
sion algorithms and delta updates, provide further opportunities for optimization.
These methods are more effective than selective feature activation, as they target the
actual storage and bandwidth demands during deployment.

Future work could explore dependency minimization strategies and alternative
runtime environments to reduce the reliance on large core components like Never-
lang. Such improvements would further enhance GUIDE's scalability and adaptability,
making it a more efficient solution for delivering customized graphical user interface
generators across diverse environments.

68

Related Work

The development of graphical user interfaces (GUIs) has been extensively studied
through various approaches, often focusing on specific aspects such as code generation,
modularity, and domain-specific abstractions. This chapter reviews relevant scientific
works that relate to the key concepts underlying this thesis: Domain-Specific Languages
(DSLs), Software Product Lines (SPLs), and graphical user interface generation.

While numerous studies explore the intersection of two of these areas, such as DSLs
for GUI modeling, SPLs for managing variability in user interfaces or automated GUI
generation, there is a noticeable lack of research that combines all three dimensions.
This thesis aims to fill that gap by integrating DSLs, SPLs, and GUI generation into a
unified framework. To contextualize this contribution, the following sections group
related works based on how they combine these core aspects.

The chapter is organized as follows: first, it discusses works focusing on DSLs for
GUI modeling and generation, highlighting how DSLs can abstract and simplify Ul
definitions. Next, it examines SPL-based approaches for GUI engineering, showcasing
how SPLs handle variability and modularity in interface development. An additional
section introduces studies that combine SPL and DSL, analyzing how their integra-
tion enhances flexibility and reusability in software product lines. A further section
explores automated GUI generation techniques, focusing on how automation impacts
development time and consistency.

7.1 DSLs for GUI Modeling and Generation

Domain-Specific Languages (DSLs) have gained attention for their ability to simplify
the modeling and generation of Graphical User Interfaces (GUIs) by providing tailored
abstractions for specific domains. Several approaches have explored the intersection
of DSLs and GUI generation, each addressing different aspects of the design, analysis,
and implementation processes.

Bacikova et al. in Defining Domain Language of Graphical User Interfaces [6] propose
a methodology that derives DSL grammars directly from existing user interfaces.
Their approach relies on the DEAL (Domain Extraction ALgorithm) method, which
traverses component-based GUISs to extract domain-relevant information and generates
corresponding DSL grammars. The authors emphasize that GUIs inherently define
domain languages, where components like text fields, buttons, and sliders can be
translated into grammar productions. However, a limitation of this approach is the

69

7 Related Work

lack of built-in modularity and variability management. Although DEAL effectively
generates DSLs from GUI structures, it does not provide mechanisms to customize or
extend the generated DSLs for varying application requirements.

Similarly, Bacikova and Porubén in DSL-driven Generation of Graphical User Interfaces [7]
extend the DEAL methodology by demonstrating the reverse process: generating
GUISs from previously extracted DSLs. By integrating the DEAL tool with the iTask
system, they show how domain knowledge encapsulated in DSLs can be leveraged
to produce new applications. This approach highlights the reusability of DSLs across
multiple applications, preserving domain models during migration to new platforms.
However, the generated GUISs are limited in terms of flexibility, as the underlying DSLs
are monolithic and do not account for variability across different user requirements.
Moreover, non-standard GUI components and custom functionalities require manual
adjustments, limiting the automation level.

In A Textual Domain Specific Language for User Interface Modelling [22], the authors
introduce a textual DSL designed specifically for modeling Uls. This DSL offers a
declarative syntax that captures the structure and behavior of user interfaces at a high
level of abstraction. The primary advantage of this approach lies in its readability and
ease of use, enabling rapid prototyping of Ul designs. However, like the previous
works, it lacks explicit support for modularity and variability management. As a
result, adapting the DSL to accommodate new requirements or extending it to support
additional UI components demands significant manual effort.

Collectively, these works demonstrate the potential of DSLs in simplifying GUI
generation by abstracting away low-level implementation details. However, a common
limitation across all approaches is the absence of mechanisms for managing variability
and modularity-essential features when targeting diverse application requirements.
This gap suggests that integrating concepts from Software Product Lines (SPLs) could
address these shortcomings by enabling systematic reuse and configuration of UI
components. The approach presented in this thesis builds upon these insights by
combining DSLs with SPL principles, offering a modular and configurable framework
for generating GUIs across multiple programming languages and platforms.

7.2 SPL Approaches in GUI Engineering

Software Product Lines (SPLs) have been widely applied to manage variability and
reuse in software development. However, when applied to Graphical User Interfaces
(GUIs), SPLs introduce unique challenges due to the need for balancing automation
and usability. The reviewed works explore how SPL techniques have been adapted
to address these issues in Ul engineering, focusing on strategies for managing Ul
variability and ensuring user-friendly designs.

Pleuss et al. in User Interface Engineering for Software Product Lines - The Dilemma
between Automation and Usability [25] explore the tension between fully automated UI
generation and the usability of the resulting interfaces. While SPL approaches excel
at automating the derivation of product variants, GUIs demand more than functional

70

7.3 SPL and DSL: Synergy for Software Engineering

completeness. Usability factors such as layout organization, visual coherence, and
interaction patterns must also be considered. The authors emphasize that purely
automated derivation can result in poorly structured interfaces when UI elements
are removed based on feature deselection. This occurs because the removal of certain
features can disrupt the overall visual and interactive balance of the interface, leading to
degraded user experiences. To address these issues, they propose a layered abstraction
approach involving Task Models, Abstract Ul Models (AUI), and Concrete UI Models
(CUI). These abstraction layers allow developers to refine usability aspects while still
leveraging automation at the lower levels of Ul generation. However, despite these
refinements, maintaining consistency across multiple abstraction levels remains a
complex task, especially for large and highly configurable product lines.

In a complementary study, Abdul Malik et al. in Proposed User Interface Generation
for Software Product Lines Engineering [27] focus on automating Ul generation using
the Interaction Flow Modeling Language (IFML). IFML enables the modeling of user
interactions separately from the application’s functional logic, making it easier to
represent Ul variability. By leveraging IFML, their approach allows the generation
of adaptive Uls that adjust automatically based on selected product features. The
authors highlight that their methodology supports dynamic customization of interface
layouts and navigation flows while maintaining a high level of automation. One notable
strength of this approach is its ability to handle Ul reconfiguration without extensive
manual intervention, thereby reducing development time and effort. However, the
reliance on IFML introduces certain limitations, particularly when dealing with non-
standard UI components or when deep customization beyond the IFML specification is
required. These cases may still necessitate manual adjustments, limiting the scalability
of the approach for highly specialized applications.

Both works underscore a common challenge in SPL-based Ul engineering: balancing
the benefits of automation with the need for customized, usable interfaces. While
abstraction techniques such as those proposed by Pleuss et al. [25] provide mech-
anisms for addressing usability concerns, they add complexity to the development
process. Conversely, the IFML-based approach of Abdul Malik et al. [27] offers a more
streamlined solution but is constrained by the expressiveness of the modeling language.
Together, these studies illustrate that achieving an optimal balance between automation
and usability remains a key area for further research in the field of SPL-driven UI
generation.

7.3 SPL and DSL: Synergy for Software Engineering

The combination of Software Product Lines (SPLs) and Domain-Specific Languages
(DSLs) offers a promising approach to enhance software reuse, modularity, and con-
tigurability. While DSLs provide high-level abstractions tailored to specific domains,
SPLs offer systematic mechanisms for managing variability and producing customized
software products efficiently. The reviewed works in this section explore how these two
paradigms can be integrated to improve language reuse and automate DSL construction.

71

7 Related Work

White et al., in Improving Domain-specific Language Reuse with Software Product-line Tech-
niques [31], propose a methodology to enhance DSL reuse by applying SPL techniques.
The paper highlights the challenges associated with traditional DSL development,
where monolithic and tightly coupled language implementations hinder adaptability
and reuse. To address this, the authors introduce a feature-oriented approach where
DSLs are decomposed into modular language components, each representing a specific
language feature. These features are managed within a product line, enabling the
automatic generation of DSL variants based on selected feature configurations. This
approach significantly reduces development effort by promoting reuse of language
features across different DSLs and domains. The paper also discusses how the use of
feature models helps manage dependencies between language components, ensuring
consistency during the generation of customized DSL instances. However, the authors
acknowledge that increasing the granularity of language features can lead to complex
dependency management, posing challenges in maintaining coherence among highly
modular components.

Complementing this work, Huang et al., in Automated DSL Construction Based on
Software Product Lines [21], present a framework that automates DSL construction
using SPL principles. The proposed framework captures language variability through
feature models and employs automated processes to generate both the syntax and
semantics of DSLs tailored to specific requirements. This automation reduces the
manual effort required in DSL development and ensures consistency across generated
language instances. One of the key contributions of this paper is the demonstration
of how the automated generation process can handle both syntactic and semantic
aspects of DSLs, providing fully functional language implementations with minimal
human intervention. The framework’s modular nature also facilitates the extension
of DSLs with new features, enhancing adaptability to evolving domain requirements.
Nevertheless, the authors note that while the framework effectively automates the
generation of standard language features, complex semantic behaviors still require
manual refinement, limiting the scope of full automation in certain scenarios.

Both works underscore the potential of integrating SPL concepts into DSL develop-
ment. White et al. emphasize the role of feature-based decomposition in promoting
language reuse, while Huang et al. focus on automating the construction of DSLs
through feature-driven generation. Together, these approaches highlight the benefits of
modularity, reuse, and automation in DSL development, although challenges related to
managing feature dependencies and supporting complex semantics remain areas for
future exploration.

7.4 Automated GUI Generation Techniques

Automated generation of Graphical User Interfaces (GUIs) has become a critical area of
research, aiming to streamline development processes, ensure consistency, and reduce
manual coding efforts. Two notable approaches to automate GUI generation are the use
of Domain-Specific Languages (DSLs) specifically designed for GUI modeling and the

72

7.4 Automated GUI Generation Techniques

adoption of XML-compliant user interface description languages. The following works
explore these approaches, highlighting their advantages, limitations, and potential
applications.

Huang et al., in Automatized Generating of GUIs for Domain-Specific Languages [5], pro-
pose a framework that employs DSLs to automate the generation of GUIs. The approach
focuses on reducing the complexity of GUI development by allowing developers to de-
scribe user interfaces using a high-level, domain-aligned syntax. The framework takes
DSL specifications and automatically generates corresponding GUI code, eliminating
the need for repetitive manual coding. The authors demonstrate how this methodology
enhances productivity and ensures consistency across applications, as developers can
focus on high-level design rather than low-level implementation details. One of the key
contributions of the paper is the detailed explanation of how the DSL integrates with
underlying GUI frameworks, supporting automatic code generation across multiple
platforms. However, the study also identifies certain challenges. For example, ensuring
that the DSL can express complex GUI behaviors without becoming overly complicated
is a non-trivial task. Additionally, adapting the framework to new GUI frameworks or
languages requires additional development effort, potentially limiting its extensibility.

A complementary perspective is provided by the comprehensive survey A Review
of XML-compliant User Interface Description Languages [28], which examines various
XML-based languages designed for GUI specification. The paper reviews multiple
XML-compliant languages, discussing their expressiveness, platform dependency, and
suitability for different application scenarios. XML-based languages provide a stan-
dardized way to represent user interfaces, separating the Ul definition from application
logic and thereby enhancing modularity and maintainability. The review identifies
key advantages of XML-based approaches, such as their widespread adoption, ease of
integration with various development tools, and ability to represent static user interface
components effectively. However, the authors also point out notable limitations. XML
descriptions tend to become verbose when modeling dynamic behaviors or complex
interactions, potentially increasing the development burden rather than reducing it. Fur-
thermore, while XML-based languages excel in defining static layouts, they often lack
the flexibility required for representing dynamic, domain-specific behaviors without
extensive customization.

These two approaches DSL-driven GUI generation and XML-compliant UI description
highlight different trade-offs. DSLs provide higher abstraction levels tailored to specific
domains, enabling more flexible and domain-aligned GUI development. However, they
require careful language design to balance expressiveness and simplicity. On the other
hand, XML-based languages offer standardization and ease of integration but may lack
the flexibility and conciseness needed for more complex applications. The reviewed
works suggest that combining these two methodologies could potentially leverage
the strengths of both, providing a robust solution for automated GUI generation that
balances flexibility, standardization, and ease of use.

73

Conclusions

The development of GUIDE has demonstrated the effectiveness of combining Domain-
Specific Languages (DSLs) and Software Product Lines (SPLs) to streamline the genera-
tion of graphical user interfaces (GUIs) across multiple programming languages. By
providing a high-level abstraction for Ul definition, GUIDE allows developers to focus
on the structure and behavior of interfaces rather than the intricacies of target languages.
The modular design, enabled by SPL principles, ensures flexibility in selecting only
the necessary components, reducing complexity and improving maintainability. The
evaluation of GUIDE confirms its ability to simplify the development process, reducing
the amount of manually written code and improving code reusability across different
platforms.

One of the key strengths of GUIDE is its ability to reduce development effort by
automating the generation of Ul code. The evaluation results indicate that GUIDE
significantly decreases the amount of manually written code, both in terms of lines
and characters, across different target languages. Additionally, its modular architecture,
driven by SPL principles, allows developers to include only the necessary features, im-
proving maintainability and scalability. The ability to generate equivalent Ul structures
across different platforms, as demonstrated in the implementation examples, highlights
GUIDE's flexibility in adapting to multiple technologies while maintaining a consistent
design approach.

Despite its advantages, GUIDE presents some limitations. The modular approach of
SPL allows for selective feature inclusion, but the actual storage footprint reduction
remains minimal due to the significant size of external dependencies, particularly
Neverlang. This limits the effectiveness of feature selection as a means of optimizing
distribution efficiency. However, while feature removal has little impact on storage, the
ability to distribute only the necessary components remains an important advantage.
In enterprise scenarios, companies may prefer to provide customized software pack-
ages containing only the purchased or required features, reducing the complexity of
the delivered product. This selective approach not only improves usability by elimi-
nating unnecessary functionality but also mitigates intellectual property concerns by
distributing only relevant components.

Future work on GUIDE could focus on several key improvements. First, generating
callback function templates with empty declarations could reduce setup time, allowing
developers to focus only on implementing business logic. Second, optimizing the
dependency management system such as distributing Neverlang separately could
enhance storage and deployment efficiency, making GUIDE more suitable for large-scale

75

8 Conclusions

applications. Additionally, extending GUIDE to support more GUI frameworks and
programming languages would improve its applicability across different development
ecosystems. Another potential enhancement is the development of a visual UI editor,
allowing users to create interfaces interactively without writing DSL code manually.
This feature would make GUIDE more accessible to non-programmers and streamline
the UI creation process. Finally, enhancing the DSL with more advanced layout options
and UI behaviors would increase its expressiveness, enabling the creation of more
complex user interfaces while maintaining the simplicity of the current approach.

76

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, Reading, Massachusetts, 1986.

[2] Jyrki Alakuijala and Zoltan Szabadka. Brotli Compressed Data Format. RFC 7932,
July 2016.

[3] Sven Apel, Don Batory, Christian Kdstner, and Gunter Saake. Feature-Oriented
Software Product Lines. Springer, April 2013.

[4] Jayant Baliga, Robert W. A. Ayre, Kerry Hinton, and Rodney S. Tucker. Green cloud
computing: Balancing energy in processing, storage, and transport. Proceedings of
the IEEE, 99(1):149-167, 2011.

[5] Michaela Bacikovd, Dominik Lakatos, and M. Nosdl. Automatized generating of
guis for domain-specific languages, o1 2012.

[6] Michaela Bac¢ikov4, J. Porubdn, and Dominik Lakatos. Defining domain language
of graphical user interfaces. OpenAccess Series in Informatics, 29:187-202, 01 2013.

[7] Michaela Bac¢ikové and Jaroslav Porubédn. Dsl-driven generation of graphical user
interfaces. Central European Journal of Computer Science, 4(4):204—221, 2014.

[8] Tim Berners-Lee. Information technology — document description and processing
languages — hypertext markup language (html), 2000. ISO/IEC 15445:2000.

[9] Barry W. Boehm. Software Engineering Economics. Prentice-Hall advances in
computing science and technology series. Prentice-Hall, Englewood Cliffs, NJ,
1981.

[10] Tim Bray, Frangois Yergeau, Michael Sperberg-McQueen, Jean Paoli, and Eve Maler.
Extensible markup language (XML) 1.0 (fifth edition). W3C recommendation, W3C,
November 2008. https://www.w3.org/TR/2008/REC-xml-20081126/.

[11] Walter Cazzola. Domain-Specific Languages in Few Steps: The Neverlang Ap-
proach. In Thomas Gschwind, Flavio De Paoli, Volker Gruhn, and Matthias
Book, editors, Proceedings of the 11" International Conference on Software Composition
(5C’12), Lecture Notes in Computer Science 7306, pages 162—177, Prague, Czech
Republic, 31st of May-1st of June 2012. Springer.

[12] Walter Cazzola and Davide Poletti. DSL Evolution through Composition. In
Proceedings of the 7" ECOOP Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE’10), Maribor, Slovenia, on 23rd of June 2010. ACM.

77

Bibliography

[13] Walter Cazzola and Edoardo Vacchi. Neverlang 2: Componentised Language
Development for the JVM. In Walter Binder, Eric Bodden, and Welf Lowe, editors,
Proceedings of the 12" International Conference on Software Composition (5C'13), Lec-
ture Notes in Computer Science 8088, pages 17-32, Budapest, Hungary, 19th of
June 2013. Springer.

[14] Donald Chamberlin. Information technology — database languages sql — part 1:
Framework (sql/framework), 2023. ISO/IEC 9075-1:2023.

[15] Yann Collet and Murray Kucherawy. Zstandard Compression and the "applica-
tion/zstd” Media Type. RFC 8878, February 2021.

[16] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific
Languages? Martin Fowler’s Blog, May 2005.

[17] Martin Fowler and Rebecca Parsons. Domain Specific Languages. Addison Wesley,
September 2010.

[18] Nadine Frohlich and Georg Paul. Lightweight Generation of User Interfaces. In Pro-
ceedings of the 2nd International Scientific Conference on Computer Science, Chalkidiki,
Greece, September 2005.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Abstraction and Reuse of Object-Oriented Design. In Oscar M. Nierstrasz,
editor, Proceedings of the 7th European Conference on Object-Oriented Programming
(ECOOP’93), Lecture Notes in Computer Science 707, pages 406—431, Kaiser-
slautern, Germany, July 1993. Springer.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Professional Computing Series.
Addison-Wesley, Reading, Ma, USA, 1995.

[21] Changyun Huang, Ataru Osaka, Yasutaka Kamei, and Naoyasu Ubayashi. Auto-
mated dsl construction based on software product lines. In 2015 3rd International
Conference on Model-Driven Engineering and Software Development (MODELSWARD),

pages 1-8, 2015.

[22] Mart Karu. A textual domain specific language for user interface modelling. In
Tarek Sobh and Khaled Elleithy, editors, Emerging Trends in Computing, Informatics,
Systems Sciences, and Engineering, pages 985-996, New York, NY, 2013. Springer
New York.

[23] Linda M. Northrop, Paul C. Clements, Felix Bachmann, John K. Bergey, Gary
Chastek, Sholom G. Cohen, Patrick Donohoe, Lawrence G. Jones, Robert W. Krut,
Jr., Reed Little, John McGregor, and Liam O’Brien. A Framework for Software Product
Line Practice, Version 5.0. Software Engineering Institute, 2012.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Bibliography

Steve McConnell. Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, Redmond, WA, USA, 2nd edition, 2004.

Andreas Pleuss, Benedikt Hauptmann, Deepak Dhungana, and Goetz Botterweck.
User interface engineering for software product lines: the dilemma between
automation and usability. In Proceedings of the 4th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS "12, pages 25-34, New York, NY,
USA, 2012. Association for Computing Machinery.

Florian Rivoal, Tab Atkins Jr, Elika Etemad, Chris Lilley, and Sebastian
Zartner. CSS snapshot 2024. Technical report, W3C, February 2025.
https:/ /www.w3.org/TR/2025/NOTE-css-2024-20250225/.

Siti Ina Sakinah, Hafiyyan Sayyid Fadhlillah, Ade Azurat, and Maya R. A. Setyau-
tami. Proposed user interface generation for software product lines engineering. In

2018 International Conference on Advanced Computer Science and Information Systems
(ICACSIS), pages 481486, 2018.

Nathalie Souchon and Jean Vanderdonckt. A review of xml-compliant user inter-
face description languages. In Joaquim A. Jorge, Nuno Jardim Nunes, and Jodo
Falcdo e Cunha, editors, Interactive Systems. Design, Specification, and Verification,
pages 377-391, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Edoardo Vacchi and Walter Cazzola. Neverlang: A Framework for Feature-
Oriented Language Development. Computer Languages, Systems & Structures, 43(3):1—
40, October 2015.

Edoardo Vacchi, Diego Mathias Olivares, Albert Shaqiri, and Walter Cazzola. Nev-
erlang 2: A Framework for Modular Language Implementation. In Proceedings of
the 13th International Conference on Modularity (Modularity’14), pages 23-26, Lugano,
Switzerland, 22nd-25th of April 2014. ACM.

Jules White, James H. Hill, Jeff Gray, Sumant Tambe, Aniruddha S. Gokhale, and
Douglas C. Schmidt. Improving domain-specific language reuse with software
product line techniques. IEEE Software, 26(4):47-53, 2009.

79

	1 Introduction
	2 Background
	2.1 Domain-Specific Languages (DSLs)
	2.1.1 A comparison between DSLs and GPLs
	2.1.2 Advantages and Limitations of DSLs
	2.1.3 Internal and External DSLs
	2.1.4 Syntax and Semantics in DSLs

	2.2 Code Generation
	2.2.1 Source Code Generation
	2.2.2 Template-Based Generation

	2.3 Software Product Line Engineering
	2.3.1 SPL Architecture and Artifacts

	2.4 Neverlang: A Language Workbench for DSLs
	2.4.1 Modular Language Implementation
	2.4.2 Extensibility and Composition
	2.4.3 Application to Domain-Specific Languages

	2.5 Graphical User Interfaces (GUIs)
	2.5.1 Key Concepts of GUIs
	2.5.2 Architectural Components of GUIs

	2.6 Design Patterns
	2.6.1 Adapter Pattern
	2.6.2 Composite Pattern
	2.6.3 Abstract Factory Pattern
	2.6.4 The Builder Pattern

	3 Problem Statement
	3.1 Existing Technologies and Limitations
	3.1.1 Slint: A Declarative Toolkit for GUI Development
	3.1.2 Glade: A GUI Designer for GNOME
	3.1.3 Flutter: A Cross-Platform UI Framework

	3.2 Research Objectives

	4 Architecture
	4.1 Library Layer
	4.2 Adapter Layer
	4.3 DSL Layer
	4.4 Software Product Line (SPL) Integration

	5 Implementation
	5.1 Technologies Used
	5.1.1 Target Languages

	5.2 Project Structure
	5.2.1 guide-lib: Library Module
	5.2.2 guide-dsl: DSL Module
	5.2.3 guide-spl: SPL Module
	5.2.4 guide-jar: Generated SPL Module

	5.3 Library Implementation
	5.3.1 Core
	5.3.2 Components and Layouts

	5.4 Adapters Implementation
	5.4.1 Structure of the Adapters
	5.4.2 Rendering and Code Generation

	5.5 DSL Implementation
	5.5.1 Core
	5.5.2 Components and Layouts
	5.5.3 Neverlang Commons

	5.6 SPL Implementation
	5.6.1 Feature-Based Composition
	5.6.2 Utility Programs for Extension

	5.7 Example Usage of the DSL
	5.7.1 Description of the Example
	5.7.2 Implementation and Evaluation

	6 Experiments
	6.1 Modularity and Scalability
	6.1.1 Commit Analysis for Modular Development

	6.2 Code Reduction and Development Effort
	6.2.1 Estimated Time Savings
	6.2.2 Conclusion

	6.3 Effort Analysis for Feature Extension
	6.3.1 Adding a New Output Language
	6.3.2 Adding a New Component or Layout
	6.3.3 Conclusion

	6.4 Impact of Feature Selection on Storage and Distribution Efficiency
	6.4.1 JAR Size Analysis
	6.4.2 Effect of Feature Removal
	6.4.3 Modularizing Dependencies for Efficient Distribution
	6.4.4 Advanced Compression Strategies for Distribution Efficiency
	6.4.5 Conclusion

	7 Related Work
	7.1 DSLs for GUI Modeling and Generation
	7.2 SPL Approaches in GUI Engineering
	7.3 SPL and DSL: Synergy for Software Engineering
	7.4 Automated GUI Generation Techniques

	8 Conclusions

